Акустико-эмиссионный метод. Метод акустической эмиссии Акустическая эмиссия контроль

ГОСТ Р ИСО 22096-2015

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Контроль состояния и диагностика машин

МЕТОД АКУСТИЧЕСКОЙ ЭМИССИИ

Condition monitoring and diagnostics of machines. Acoustic emission method


ОКС 17.140.20
17.160

Дата введения 2016-12-01

Предисловие

Предисловие

1 ПОДГОТОВЛЕН Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (АО "НИЦ КД") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 183 "Вибрация, удар и контроль технического состояния"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 20 октября 2015 г. N 1583-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 22096:2007* "Контроль состояния и диагностика машин. Акустическая эмиссия" (ISO 22096:2007 "Condition monitoring and diagnostics of machines - Acoustic emission", IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей . - Примечание изготовителя базы данных.


Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с требованиями ГОСТ Р 1.5-2012 (пункт 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Март 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации" . Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Метод акустической эмиссии может быть использован в целях контроля состояния машин и диагностирования как самостоятельно, так и в сочетаниях с другими методами, например, основанными на анализе сигналов вибрации или теплового излучения машин. Метод может быть реализован с использованием стационарных, полустационарных и переносных измерительных систем в зависимости от степени критичности обследуемых объектов. Обычно в состав измерительной системы входят преобразователи, усилители сигналов, фильтры и устройства сбора данных. В зависимости от целей применения метода могут быть использованы разные характеристики сигнала акустической эмиссии.

1 Область применения

Настоящий стандарт устанавливает общие принципы применения метода акустической эмиссии в целях контроля состояния и диагностирования машин, работающих в разных режимах и в разных условиях применения. Метод распространяется на все виды машин и основан на измерениях только тех сигналов, что распространяются по конструкции машины.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ISO 2041, Mechanical vibration, shock and condition monitoring - Vocabulary (Вибрация, удар и контроль состояния. Словарь)

ISO 12716, Non-destructive testing - Acoustic emission inspection - Vocabulary (Контроль неразрушающий. Метод акустической эмиссии. Словарь)

ISO 13372, Condition monitoring and diagnostics of machines - Vocabulary (Контроль состояния и диагностика машин. Словарь)

ISO 18436-6, Condition monitoring and diagnostics of machines - Requirements for qualification and assessment of personnel - Part 6: Acoustic emission (Контроль состояния и диагностика машин. Требования к квалификации и оценке персонала. Часть 6. Метод акустической эмиссии)

3 Термины и определения

В настоящем стандарте применены термины по ИСО 2041, ИСО 12716, ИСО 13372, а также следующие термины с соответствующими определениями.

3.1 акустическая эмиссия (контроль состояния машин) (acoustic emission): Класс явлений, приводящих к появлению распространяющихся по конструкции или в среде (жидкостях, газах) волн вследствие быстропротекающих процессов высвобождения энергии из локализованных источников внутри или на поверхности материала.

Примечание 1 - Высвобождение энергии может быть следствием таких процессов, как распространение трещины в материале, трение соприкасающихся частей машины, удары между частями машины или утечки материала.

Примечание 2 - Данное определение сформулировано в максимально общей форме с целью отразить различные возможности применения метода акустической эмиссии в целях контроля состояния машин разных видов.

3.2 акустико-эмиссионный контроль (контроль состояния машин) (acoustic emission monitoring): Обнаружение и сбор данных акустической эмиссии, позволяющих судить о состоянии машины.

Примечание - Данное определение применимо только в области контроля состояния машин.

3.3 акустико-эмиссионный преобразователь (acoustic emission sensor/receiver): Устройство, позволяющее преобразовать движение упругой волны в электрический сигнал.

3.4 сигнал акустической эмиссии (acoustic emission signal): Электрический сигнал на выходе акустико-эмиссионного преобразователя, связанный с акустической волной от источника акустической эмиссии.

3.5 акустико-эмиссионные характеристики (acoustic emission characteristics): Набор характеристик, описывающих акустическую эмиссию данной машины или источник акустической эмиссии.

Примечание - Описываемый волновой процесс, обусловленный акустической эмиссией, может быть импульсного или непрерывного типа.

3.6 акустико-эмиссионный волновод (acoustic emission waveguide): Устройство, по которому акустическая волна распространяется от источника к акустико-эмиссионному преобразователю.

3.7 фоновый шум (background noise): Ложная составляющая сигнала акустической эмиссии, не связанная с процессами акустической эмиссии в контролируемых узлах машины.

Примечание - Фоновый шум может представлять собой сигнал, обусловленный электрическими, температурными или механическими процессами.

3.8 контактная среда (couplant): Среда между объектом акустико-эмиссионного контроля и акустико-эмиссионным преобразователем, используемая для улучшения передачи акустической волны.

Примеры - Масло, смазка, клеевое соединение, водно-эмульсионная смазочно-охлаждающая паста, воск.

3.9 имитатор Су-Нильсена (Hsu-Nielsen source): Устройство для установки и излома графитового стержня карандаша с целью искусственного моделирования процесса акустической эмиссии и возбуждения акустической волны.

Примечание - Акустическая волна зависит от применяемого стержня. Обычно применяют стержень твердостью 2Н диаметром 0,5 мм (допускается 0,3 мм) и длиной (3,0±0,5) мм.

3.10 машина (machine): Механическая система, предназначенная для выполнения определенных задач (формирования материала, передачи и преобразования движения, силы или энергии).

3.11 машинный агрегат (machine system): Механическая система, основным элементом которой является отдельная машина (см. 3.10) и которая включает в себя также вспомогательные элементы, предназначенные для поддержания функционирования этой машины.

4 Принципы метода акустической эмиссии

4.1 Явление акустической эмиссии

Акустическая эмиссия может иметь место внутри или на поверхности материалов. Данное явление заключается в спонтанном высвобождении энергии, выражаемом в форме распространения упругих волн. Акустическая эмиссия внутри материала проявляет себя через упругие волны на поверхности материала в широком диапазоне частот (обычно от 20 кГц до 1 МГц).

Упругие волны, связанные с процессами акустической эмиссии, обнаруживают с помощью специальных преобразователей движения точек на поверхности материала в электрические сигналы. Эти сигналы затем подлежат соответствующему преобразованию и обработке для получения информации о состоянии контролируемого объекта и раннего обнаружения процессов потери механической и структурной целости объекта. Форма электрического сигнала зависит от путей распространения и форм акустических волн, генерируемых внутри и/или на поверхности материала. Поэтому сигналы акустической эмиссии от одних и тех же источников могут быть разными в зависимости от путей прохождения акустических волн.

4.2 Преимущества и ограничения метода

Преимуществами метода являются:

a) получение данных без вмешательства в конструкцию контролируемого объекта;

b) получение данных в реальном масштабе времени;

c) высокая чувствительность, позволяющая осуществлять более раннее (например, по сравнению с вибрационным методом) обнаружение;

d) возможность контроля динамического поведения объекта;

e) применимость в широком диапазоне скоростей вращения, позволяющая осуществлять контроль, в том числе, низкоскоростных машин (со скоростью вращения ротора менее 60 мин);

f) возможность обнаружения процессов износа и трения, например при ослаблении соединений соседних элементов машины или вследствие ухудшения состояния смазки.

Ограничения метода связаны с:

- быстрым ослаблением акустических волн при прохождении по конструкции машины;

- высокой зависимостью от фонового шума;

- невозможностью точного сопоставления акустико-эмиссионных характеристик с механизмом неисправности в машине.

5 Применение метода акустической эмиссии

5.1 Контроль состояния машин

Метод акустической эмиссии может быть применен к широкому классу машин при условии наличия пути передачи через элементы конструкции машины акустической волны от интересующего объекта контроля к акустико-эмиссионному преобразователю. В таблице 1 показаны некоторые примеры неисправностей для машин разных видов, которые могут быть выявлены с использованием данного метода. Оценка состояния осуществляется не по абсолютным значениям параметров сигнала акустической эмиссии, а по их изменениям в заданном режиме работы машины.

Таблица 1 - Примеры применения метода акустической эмиссии в целях контроля состояния машин

Тип машин

Неисправности

Дефекты подши-
пников

Исти-
рание уплот-
нений

Загряз-
нение/
умень-
шение смазки

Несоос-
ность

Дефекты уста-
новки

Процессы (утечки, изме-
нения рабочих харак-
теристик)

Насосы

Коробки передач

Электродвигатели

Паровые турбины

Газовые турбины

Электрогенераторы

Дизельные двигатели

Механообрабатывающие центры

Вентиляторы, воздуходувки

Низкоскоростные машины вращательного действия (менее 60 мин)

Узлы машин (кпапаны, теплообменники)

Компрессоры

Например, повышение общего уровня сигнала в установившемся режиме работы машины свидетельствует об ухудшении ее технического состояния. Модуляция сигнала одной из основных подшипниковых частот является признаком ранней стадии повреждения подшипника, которое может еще не быть обнаружено по наблюдениям вибрации и ударных импульсов. Следует отметить, что проявление акустико-эмиссионной активности может быть разным для разных машин, разных условий работы и разных нагрузок.

5.2 Влияющие факторы

Прежде чем проводить измерения акустической эмиссии важно убедиться в том, что на их результаты не повлияют сторонние шумы, такие как шум электронных устройств (электромагнитные поля радиочастотного диапазона), воздушный шум (от струй газа или ударов о машину мелких частиц, поднимаемых ветром), шум от рабочих процессов в машине (потоков жидкостей в трубах) и механический фоновый шум.

6 Сбор данных

6.1 Установка системы

Типичная схема системы сбора данных акустической эмиссии показана на рисунке 1. Обычно преобразователь устанавливают на обследуемой машине и соединяют с предусилителем, выход которого соединен с входом устройства сбора данных. Некоторые акустико-эмиссионные преобразователи имеют встроенные предусилители. Данные собирают во время работы машины. Их объем и глубина последующего анализа зависят от конкретного применения. Система может быть выполнена в стационарном, полустационарном или переносном вариантах.

Рисунок 1 - Схематичное изображение системы сбора данных

6.2 Средства измерений

Детектирование волны, порожденной акустической эмиссией, является наиболее критичной частью измерения, поэтому необходимо принять все меры для обеспечения хорошего пути ее прохождения, включая согласование импедансов на границах сред. Необходимо рассмотреть также последствия неправильного выбора частотных фильтров, преобразователей, частоты дискретизации и т.п. Требования к средствам измерений и их калибровке могут быть взяты из , , , . При выборе преобразователя следует учитывать его размеры, коэффициент преобразования, частотную характеристику и условия применения. В ряде случаев, например при обследовании крупных подшипников, для обнаружения источников акустической эмиссии может потребоваться использование нескольких преобразователей. Локализация источника акустической эмиссии может быть выполнена несколькими способами, в том числе на основе расчета времен прихода акустической волны к преобразователям.

6.3 Установка преобразователей и применение контактных сред

При использовании метода акустической эмиссии в целях контроля состояния машин важно убедиться, что преобразователь надежно установлен в месте крепления с использованием соответствующей контактной среды. Крепление может быть осуществлено с применением механических устройств (с созданием прижимной силы посредством магнита, механического зажима и т.д.) или клеящих материалов. В последнем случае клеящий материал является контактной средой.

Положение акустико-эмиссионного преобразователя должно обеспечить наличие пути прохождения к нему акустической волны по элементам конструкции машины. Этот путь может включать в себя разрывы (эти разрывы рассматриваются как границы между двумя элементами, например между головкой болта и зажимаемой деталью), однако между граничащими элементами должен быть обеспечен контакт - либо механический, либо через контактную среду (примером может быть путь распространения через подшипник скольжения, где смазка и охлаждающее масло в подшипнике выступают в качестве контактной среды). Место установки преобразователя должно быть чистым. Для улучшения прохождения акустической волны можно удалить в месте установки преобразователя все слои краски вплоть до поверхности металла, однако при этом следует убедиться, что данная операция не ухудшит техническое состояние машины. Следует принять все возможные меры к тому, чтобы контактная поверхность преобразователя плотно прилегала к поверхности установки, т.е. последняя должна быть ровной, чистой и не иметь трещин. Улучшение качества пути прохождения акустической волны улучшает повторяемость результатов измерений.

В определенных обстоятельствах преобразователь может быть установлен в акустико-эмиссионном волноводе. Обычно волновод применяют для обеспечения более прямого пути прохождения волны от источника акустической эмиссии в наблюдаемом объекте к преобразователю, а также с целью уменьшить температурное влияние на преобразователь. Волновод может изменять характеристики акустической волны (амплитуду, форму и т.п.).

При использовании контактной среды небольшое ее количество наносят в центр той области, где должен быть установлен преобразователь. Затем преобразователь плотно прижимают к поверхности, равномерно распределяют контактную среду по всей области контакта. От толщины контактной среды может зависеть коэффициент преобразования преобразователя.

Если использование контактной среды нецелесообразно по практическим соображениям, то применяют сухой контакт. Необходимую прижимную силу определяют экспериментально, например, с использованием имитатора Су-Нильсена. Следует убедиться, что между контактной поверхностью преобразователя и поверхностью установки отсутствуют пустоты.

При использовании клеящей контактной среды следует убедиться, что создаваемая связь между преобразователем и поверхностью установки не разрушится вследствие возможной деформации поверхности, температурных расширений или механических нагрузок. Должны быть известны свойства клеящей среды в конкретных условиях применения.

Примечание - Растрескивание клеящего слоя само приводит к появлению сигналов акустической эмиссии.


Для предотвращения фонового шума электрической природы преобразователь должен быть электрически изолирован.

7 Предварительные сведения

Приготовление к измерениям и их проведение требует знания:

- идентификационных данных машины (ее название и номер);

- режима работы (нагрузка, скорость, температура и т.д.);

- истории эксплуатации и технического обслуживания;

- конструкции машины;

- истории ее неисправностей или отказов;

- предыдущих данных измерений акустической эмиссии.

Для правильной интерпретации результатов измерений необходимо наличие соответствующей экспериментальной базы данных или знания базового уровня, соответствующего нормальным условиям применения машины. Базовый уровень представляет собой значения совокупности контролируемых параметров, получаемых, когда известно, что машина находится в хорошем техническом состоянии и работает в стабильном режиме. Результаты последующих измерений сравнивают с базовым уровнем для выявления возможных отклонений.

Для машин, работающих в нескольких режимах, может быть установлено несколько базовых уровней - по одному для каждого контролируемого режима. Для машин, вводимых в эксплуатацию после покупки или ремонта, может быть установлен период прирабатывания. В течение этого периода (нескольких дней или недель) могут наблюдаться изменения контролируемых параметров. Результаты измерений, проведенных в период прирабатывания, не следует использовать для формирования базового уровня. Базовый уровень может быть определен также для оборудования, уже длительное время находившегося в эксплуатации, но для которого только сейчас начинают применять метод акустико-эмиссионного контроля.

8 Анализ данных и представление результатов

Основная цель анализа состоит в установлении связи между акустико-эмиссионными характеристиками и условиями работы машины, измерении отклонений от базовой линии для идентификации состояния машины.

Критериями, применяемыми при контроле состояния машин методом акустической эмиссии, могут быть следующие:

a) повышение со временем активности источников акустической эмиссии;

b) значения акустико-эмиссионных характеристик в установившемся режиме работы машины;

c) появление в сигнале акустической эмиссии характерных особенностей, отсутствующих в случае хорошего технического состояния машины;

d) специальные инструментальные критерии, определяемые изготовителем средств измерений;

e) наличие амплитудной модуляции сигнала акустической эмиссии с частотой, характерной для данного дефекта.

9 Процедуры

Успешное применение метода акустической эмиссии невозможно без регулярных точных измерений контролируемых параметров. Это требует от персонала разработки, оценки качества и применения документированных процедур испытаний, а также понимания возможных ограничений этих процедур. Требования к компетентности персонала, использующего метод акустической эмиссии, установлены в ИСО 18436-6.

Приложение ДА (справочное). Сведения о соответствии ссылочных международных стандартов национальным стандартам

Приложение ДА
(справочное)

Таблица ДА.1

Обозначение ссылочного международного стандарта

Степень соответствия

Обозначение и наименование соответствующего национального стандарта
ГОСТ Р ИСО 18436-6-2012 "Контроль состояния и диагностика машин. Требования к квалификации и оценке персонала. Часть 6. Метод акустической эмиссии"

Примечание - В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT - идентичные стандарты.

Библиография

ISO 17359, Condition monitoring and diagnostics of machines - General guidelines

EN 13477-1, Non-destructive testing - Acoustic emission - Equipment characterisation - Part 1: Equipment description

EN 13477-2, Non-destructive testing - Acoustic emission - Equipment characterisation - Part 2: Verification of operating characteristic

EN 13554, Non-destructive testing - Acoustic emission - General principles

ASTM E976-05, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response

ASTM E1106-86, Standard Method for Primary Calibration of Acoustic Emission Sensors

DSTU 4227, Guidelines on acoustic-emission diagnostics of critical objects

УДК 534.322.3.08:006.354

Ключевые слова: машины, акустическая эмиссия, источники, преобразователь, средства измерений, контроль состояния



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2019

Излучением материала при контрольном его нагружении. Эффект акустической эмиссии может использоваться для определения образования дефектов на начальной стадии разрушения конструкции. Он же может быть использован для определения степени сейсмической опасности геологических пород; при этом эмиссию можно вызывать искусственно.

Основной принцип диагностики инженерных сооружений и конструкций заключается в пассивном сборе информации с множества звуковых (и ультразвуковых) датчиков , и её обработке для последующего определения степени износа конструкции.

Примеры

Перед тем как начать ломаться, нагружённая ветка дерева издаёт специфический скрип , при этом наблюдается скачкообразный импульс АЭ-сигнала.

Ссылки

  • Г. А. Соболев, А. В. Пономарев, А. В. Кольцов, Б. Г. Салов, О. В. Бабичев, В. А. Терентьев, А. В. Патонин, А. О. Мострюков - «ВОЗБУЖДЕНИЕ АКУСТИЧЕСКОЙ ЭМИССИИ УПРУГИМИ ИМПУЛЬСАМИ»
  • Эффективная физика - «Эмиссия акустическая» копия из веб-архива

Wikimedia Foundation . 2010 .

Смотреть что такое "Акустическая эмиссия" в других словарях:

    акустическая эмиссия - Ндп. эмиссия волн напряжений звуковая эмиссия ультразвуковая эмиссия акустическое излучение ультразвуковое излучение сейсмоакустическое излучение Испускание объектом контроля (испытаний) акустических волн [ГОСТ 27655 88] Недопустимые,… …

    Акустическая эмиссия - процесс выхода (испускания, возникновения) звука из твердых или жидких тел под влиянием внешних воздействий (механического воздействия, нагревания, охлаждения, освещения и др.) … Российская энциклопедия по охране труда

    акустическая эмиссия - 2.1 акустическая эмиссия; АЭ (acoustic emission): Класс явлений, заключающийся в излучении упругих волн, возникающих в процессе перестройки внутренней структуры твердых тел, или переходных волн, вызванных таким же образом. Примечание Акустическая …

    Акустическая эмиссия (АЭ) - 1.1. Акустическая эмиссия (АЭ) Ндп. Эмиссия волн напряжений, звуковая эмиссия, ультразвуковая эмиссия, акустическое излучение, ультразвуковое излучение, сейсмо акустическое излучение D. Schallemission (SE) Е. Acoustic emission (AE) Излучение… … Словарь-справочник терминов нормативно-технической документации

    Acoustic emission Акустическая эмиссия. Критерий целостности материала, который определяется звуковым излучением материала при нагружении. Акустическая эмиссия может определяться образованием дефектов или начинающимся отказом. (Источник: «Металлы … Словарь металлургических терминов

    акустическая эмиссия - испускание твердым телом звуковых волн при разных физических процессах, например, при зарождении и развтии трещин в металле при внешних механических нагружениях; может регистрироваться и служить качественной характеристикой… … Энциклопедический словарь по металлургии

    акустическая эмиссия материала - Акустическая эмиссия, вызванная динамической локальной перестройкой структуры материала [ГОСТ 27655 88] Тематики акустические измерения EN acoustic emission of materialmaterial acoustic emissiоn DE Werkstoffsschallemission … Справочник технического переводчика

    акустическая эмиссия трения - Акустическая эмиссия, вызванная трением поверхностей твердых тел [ГОСТ 27655 88] Тематики акустические измерения EN acoustic emission of frictionfriction acoustic emission DE Reibungsschallemission … Справочник технического переводчика

    акустическая эмиссия утечки - Акустическая эмиссия, вызванная гидродинамическими и (или) аэродинамическими явлениями при протекании жидкости или газа через сквозную несплошность объекта испытаний. [ГОСТ 27655 88] Тематики акустические измерения EN leakage acoustic emission DE … Справочник технического переводчика

    акустическая эмиссия утечки истечения жидкости и (или) газа - Акустическая эмиссия, вызванная гидродинамическими и (или) аэродинамическими явлениями при протекании жидкости или газа через сквозную несплошность объекта испытаний. [ГОСТ 27655 88] [Система неразрушающего контроля. Виды (методы) и технология… … Справочник технического переводчика

Книги

  • Механика композиционных материалов. Лабораторные работы и практические занятия , В. В. Носов. В пособии рассмотрены лабораторные работы и практические занятия по вопросам классификации, строения, технологии изготовления, контроля качества, моделирования процессов деформирования и…
  • Механика композиционных материалов Лабораторные работы и практические занятия Учебное пособие , Носов В.. В пособии рассмотрены лабораторные работы и практические занятия по вопросам классификации, строения, технологии изготовления, контроля качества, моделирования процессов деформирования и…

Метод акустической эмиссии относится к диагностике и направлен на выявление состояния предразрушения трубоопровода путем определения и анализа шумов, сопровождающих процесс образования и роста трещин.

Для регистрации волн акустической эмиссии используют аппаратуру, работающую в широком интервале частот - от кГц до МГц.

При испытании приложение нагрузки приводит к возникновению в зоне предразрушения акустического сигнала. Информация о времени распространения сигнала, его амплитуде, частотном спектре и т.п. воспринимается пьезоэлектрическими акустическими датчиками. Обработка полученной информации служит основанием для заключения о природе, месте расположения и росте дефекта.

Источники акустической эмиссии. Контроль сигналов АЭ

При разрушении почти все материалы издают звук, т. е. испускают акустические волны, воспринимаемые на слух. Большинство конструкционных материалов (например, многие металлы и композиционные материалы) начинают при нагружении испускать акустические колебания в ультразвуковой (неслышимой) части спектра еще задолго до разрушения. Изучение и регистрация этих волн стала возможной с созданием специальной аппаратуры.

Под акустической эмиссией (эмиссия -- испускание, генерация) понимается возникновение в среде упругих волн, вызванных изменением ее состояния под действием внешних или внутренних факторов. Акустико-эмиссионный метод основан на анализе этих волн и является одним из пассивных методов акустического контроля. В соответствии с ГОСТ 27655--88 «Акустическая эмиссия. Термины, определения и обозначения» механизмом возбуждения акустической эмиссии (АЭ) является совокупность физических и (или) химических процессов, происходящих в объекте контроля. В зависимости от типа процесса АЭ разделяют на следующие виды:

* АЭ материала, вызываемая динамической локальной перестройкой его структуры;

*АЭ трения, вызываемая трением поверхностей твердых тел в местах приложения нагрузки и в соединениях, где имеет место податливость сопрягаемых элементов;

* АЭ утечки, вызванная результатом взаимодействия протекающей через течь жидкости или газа со стенками течи и окружающим воздухом;

* АЭ при химических или электрических реакциях, возникающих в результате протекания соответствующих реакций, в том числе сопровождающих коррозийные процессы;

* магнитная и радиационная АЭ, возникающая соответственно при перемагничивании материалов (магнитный шум) или в результате взаимодействия с ним ионизирующего излучения;

* АЭ, вызываемая фазовыми превращениями в веществах и материалах.

Таким образом, АЭ -- явление, сопровождающее едва ли не все физические процессы, протекающие в твердых телах и на их поверхности. Возможности регистрации ряда видов АЭ вследствие их малости, особенно АЭ, возникающих на молекулярном уровне, при движении дефектов (дислокаций) кристаллической решетки, ограничивается чувствительностью аппаратуры, поэтому в практике АЭ контроля большинства промышленных объектов, в том числе объектов нефтегазовой промышленности, используют первые три вида АЭ. При этом необходимо иметь в виду, что АЭ трения создает шум, приводит к образованию ложных дефектов и является одним из основных факторов, усложняющих применение АЭ метода. Кроме того, из АЭ первого вида регистрируются только наиболее сильные сигналы от развивающихся дефектов: при росте трещин и при пластическом деформировании материала. Последнее обстоятельство придает АЭ методу большую практическую значимость и обусловливает его широкое применение для целей технической диагностики. Целью АЭ контроля является обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии, связанными с несплошностями на поверхности или в объеме стенки объекта контроля, сварного соединения и изготовляемых частей и компонентов. Все индикации, вызванные источниками АЭ, должны быть при наличии технической возможности оценены другими методами неразрушающего контроля.

Регистрация сигнала от источника АЭ осуществляется одновременно с шумом постоянного или переменного уровня. Шумы являются одним из основных факторов, снижающих эффективность АЭ контроля. Ввиду разнообразия причин, вызывающих их появление, шумы классифицируются в зависимости от:

*механизма генерации (источника происхождения) -- акустические (механические) и электромагнитные;

* вида сигнала шумов -- импульсные и непрерывные;

* расположения источника -- внешние и внутренние.

Основными источниками шумов при АЭ контроле объектов являются:

* разбрызгивание жидкости в емкости, сосуде или трубопроводе при его наполнении;

* гидродинамические турбулентные явления при высокой скорости нагружения;

*трение в точках контакта объекта с опорами или подвеской, а также в соединениях, обладающих податливостью;

* работа насосов, моторов и других механических устройств;

* действие электромагнитных наводок;

* воздействие окружающей среды (дождя, ветра и пр.);

* собственные тепловые шумы преобразователя АЭ и шум входных каскадов усилителя (предусилителя).

Для подавления шумов и выделения полезного сигнала обычно применяют два метода: амплитудный и частотный. Амплитудный заключается в установлении фиксированного или плавающего уровня дискриминационного порога U n , ниже которого сигналы АЭ аппаратура не регистрирует. Фиксированный порог устанавливается при наличии шумов постоянного уровня, плавающий -- переменного. Плавающий порог U n , устанавливаемый автоматически за счет отслеживания общего уровня шумов, позволяет, в отличие от фиксированного, исключить регистрацию части сигналов шума как сигнала АЭ.

Частотный метод подавления шумов заключается в фильтрации сигнала, принимаемого приемниками АЭ, с помощью низко- и высокочастотных фильтров (ФНЧ/ФВЧ). В этом случае для настройки фильтров перед проведением контроля предварительно оценивают частоту и уровень соответствующих шумов.

После прохождения сигнала через фильтры и усилительный тракт, наряду с трансформацией волн на поверхности контролируемого изделия, происходит дальнейшее искажение первоначальных импульсов источника АЭ. Они приобретают двухполярный осциллирующий характер. Дальнейший порядок обработки сигналов и использования их в качестве информативного параметра определяется компьютерными программами сбора данных и их постобработки, использованными в соответствующей аппаратуре различных производителей. Правильность определения числа событий и их амплитуда будут зависеть не только от возможности их регистрации (разрешающей способности аппаратуры), но и от способа регистрации.

После обработки принятых сигналов результаты контроля представляют в виде идентифицированных (с целью исключения ложных дефектов) и классифицированных источников АЭ.

Выявленные и идентифицированные источники АЭ рекомендуется разделять на четыре класса:

* первый -- пассивный источник, регистрируемый для анализа динамики его развития;

* второй -- активный источник, требующий дополнительного контроля с использованием других методов;

* третий -- критически активный источник, требующий контроля за развитием ситуации и принятия мер по подготовке возможного сброса нагрузки;

* четвертый -- катастрофически активный источник, требующий немедленного уменьшения нагрузки до нуля либо до величины, при которой активность источника снижается до уровня второго или третьего класса.

Учитывая большое число параметров, характеризующих АЭ, отнесение источников к соответствующему классу осуществляется с помощью ряда критериев, учитывающих набор параметров. Выбор критериев осуществляется по ПБ 03-593-03 в зависимости от механических и акустико-эмиссионных свойств материалов контролируемых объектов. К числу критериев относятся следующие:

* амплитудный, основанный на регистрации амплитуд импульсов (не менее трех от одного источника) и их сравнении с величиной превышения порога (А,), которая соответствует росту трещины в материале.

* интегральный, основанный на сравнении оценки активности источников АЭ F с относительной силой этих источников J k в каждом интервале регистрации.

* локально-динамический, использующий изменение числа АЭ локационных событий на ступенях выдержки давления и динамику изменения энергии или квадрата амплитуды лоцированного события с ростом нагруженности объекта. Этот критерий используется для оценки состояния объектов, структура и свойства материала которых точно не известны.

* интегрально-динамический, производящий классификацию источника АЭ в зависимости от его типа и ранга. Тип источника определяют по динамике энерговыделения, исходя из амплитуды АЭ сигналов на интервале наблюдения. Ранг источника устанавливают путем расчета его коэффициента концентрации С и суммарной энергии Е.

* критерии кода ASME, предназначенные для зонной локации и требующие знания допустимых значений параметров АЭ, что предполагает предварительное изучение свойств контролируемых материалов и учет объекта контроля как акустического канала.

Метод АЭ позволяет контролировать всю поверхность объекта контроля. Для проведения контроля должен быть обеспечен непосредственный доступ к участкам поверхности объекта контроля для установки ПАЭ. При отсутствии такой возможности, например при проведении периодического или постоянного контроля подземных магистральных трубопроводов без освобождения их от грунта и изоляции, могут быть использованы волноводы, укрепленные постоянно на контролируемом объекте.

До нагружения объекта проверяют работоспособность аппаратуры и оценивают погрешность определения координат с помощью имитатора. Его устанавливают в выбранной точке объекта и сравнивают показания системы определения координат с реальными координатами имитатора. В качестве имитатора используют пьезоэлектрический преобразователь, возбуждаемый электрическими импульсами от генератора.

Визуализация расположения источников АЭ осуществляется с помощью видеомонитора, на котором источники изображаются в соответствующем месте на развертке контролируемого объекта (см. рис. 1) в виде светящихся точек различной яркости, цвета или формы (зависит от использованного программного обеспечения). Документирование результатов контроля осуществляется с помощью соответствующих периферийных устройств, подключаемых к основному процессору.

В случае непрерывной АЭ определить время задержки сигналов становится невозможно. В этом случае координаты источника АЭ можно определить, используя так называемый амплитудный метод, основанный на измерении амплитуды сигнала разными ПАЭ. В практике диагностирования этот метод применяют для обнаружения течей через сквозные отверстия контролируемого изделия. Он заключается в построении столбчатой гистограммы амплитуды сигнала источника, принимаемого различными ПАЭ. Анализ такой гистограммы позволяет выявить зону расположения течи. Удобен при диагностировании таких линейных объектов, как нефте- и газопроводы.

Системы диагностического мониторинга, базирующиеся на методе АЭ контроля, являются наиболее универсальными. Аппаратное решение такой системы обычно включает:

* типовые блоки акустико-эмиссионной аппаратуры;

* блоки согласования и коммутации всех видов первичных преобразователей дополнительных видов неразрушающего контроля, состав которых определяется видом контролируемого объекта;

* блоки управления и принятия решения по результатам диагностической информации о текущем состоянии контролируемого объекта.

На каждый объект разрабатывается соответствующая технология контроля. Работы по АЭ контролю начинаются с установки ПАЭ на объект. Установка осуществляется непосредственно на зачищенную поверхность объекта либо должен быть использован соответствующий волновод. Для осуществления локаций источников АЭ на объемном объекте, имеющем большую площадь поверхности, ПАЭ размещаются в виде групп (антенн), в каждой из которых используется не менее трех преобразователей. На линейном объекте в каждой группе используют по два ПАЭ.

Контроль проводится только при создании в конструкции напряженного состояния, инициирующего в материале объекта работу источников АЭ. Для этого объект подвергается нагружению силой, давлением, температурным полем и т.д.

Наблюдение и контроль следует осуществлять на всех этапах испытаний. Некоторые виды дефектов проявляют себя в период сброса давления. Так, при снижении давления возникают сигналы от трения берегов трещин при их смыкании. Такие дефекты, как отдулины, возникающие чаще всего при наводороживании металла и проявляющиеся в расслоении металла по толщине, также обнаруживаются на этапе сброса давления (отдулины хорошо обнаруживаются визуально при косом освещении, иногда ощущаются при нажатии рукой). Для подтверждения их наличия обычно применяют методы УЗК.

В процессе нагружения рекомендуется непрерывно наблюдать на экране монитора обзорную картину АЭ излучения испытуемого объекта. Испытания прекращаются досрочно в случаях, когда регистрируемый источник АЭ относится к четвертому классу. Объект должен быть разгружен, испытание либо прекращено, либо выяснен источник АЭ и оценена безопасность продолжения испытаний. Быстрое (экспоненциальное) нарастание суммарного счета, амплитуды импульсов, энергии или MARSE может служить показателем ускоренного роста трещины, приводящего к разрушению.

Характерными особенностями метода АЭ контроля, определяющими его возможности и область применения, являются следующие:

* метод АЭ контроля обеспечивает обнаружение и регистрацию только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности. При этом большие по размерам дефекты могут попасть в класс неопасных, что значительно снижает потери из-за перебраковки. Одновременно при развитии опасного растущего дефекта, когда его размеры приближаются к критическому значению, амплитуда сигналов АЭ и темп их генерации резко увеличиваются, что приводит к значительному возрастанию вероятности обнаружения такого источника АЭ и повышает надежность эксплуатируемого оборудования;

* чувствительность метода АЭ контроля весьма высока. Он позволяет выявить в рабочих условиях приращение трещины порядка долей миллиметра, что значительно превышает чувствительность других методов. Положение и ориентация объекта не влияют на выявляемость дефектов;

* свойство интегральности метода АЭ контроля обеспечивает контроль всего объекта с использованием одного или нескольких преобразователей АЭ контроля, неподвижно установленных на поверхности объекта;

* метод АЭ контроля обеспечивает возможность проведения контроля объектов без удаления их гидро- или теплоизоляции. Для проведения контроля достаточно вскрыть изоляцию только в местах установки преобразователей, что многократно снижает объем восстановительных работ;

* метод обеспечивает возможность проведения дистанционного контроля недоступных объектов, таких, как подземные и подводные трубопроводы, аппараты закрытых конструкций и т.п.;

* метод позволяет проводить контроль различных технологических процессов и процессов изменения свойств и состояния материалов и имеет меньше ограничений, связанных с их свойствами и структурой;

* при контроле промышленных объектов метод во многих случаях обладает максимальным значением отношения эффективность/стоимость.

Существенным недостатком метода является сложность выделения полезного сигнала из помех, когда дефект мал. Другим существенным недостатком метода наряду с высокой стоимостью аппаратуры является необходимость высокой квалификации оператора АЭ контроля.

Структура аппаратуры АЭ контроля определяется следующими основными задачами: прием и идентификация сигналов АЭ, их усиление и обработка, определение значений параметров сигналов фиксация результатов и выдача информации. Аппаратура различается степенью сложности, назначением, транспортабельностью, а также классом в зависимости от объема получаемой информации.

Наибольшее распространение нашла многоканальная аппаратура, позволяющая наряду с параметрами АЭ определять координаты источников сигналов с одновременной регистрацией параметров испытаний (нагрузка, давление, температура и пр.).

Закрепление ПАЭ на поверхности объекта контроля осуществляется различными способами: с помощью клея, хомутами, струбцинами, магнитными держателями, с помощью стационарно установленных кронштейнов и т. п. В практике промышленного АЭ контроля используют в основном резонансные ПАЭ, так как чувствительность у них намного выше.

Крепление ПАЭ осуществляется с помощью магнитного прижима. Для обеспечения максимальной чувствительности тыльная сторона пластины выполнена свободной, а боковая поверхность задемпфирована лишь на 30 % компаундом.

Рисунок 2 - Схема расположения источников АЭ на развертке сосуда и местоположение зарегистрированных дефектов: 1 -- обечайка 1; 2 -- обечайка 2; 3 -- вход воздуха; 4 -- обечайка 3; 5 -- днище нижнее; 6 -- штуцер слива конденсатора; 7 -- лазовое отверстие; 8 -- штуцер манометра; 9 -- штуцер предохранительного клапана; 10 -- днище верхнее; I--VIII -- номера приемников АЭ

В настоящее время на трубопроводах эксплуатируется ряд систем, работа которых основана на различных физических принципах.

Акустические системы регистрируют в акустическом диапазоне частот волны, сформированные утечками. К этим системам относятся: СНКГН-1, СНКГН-2 (НИИ интроскопии при Томском политехническом университете); "LeakWave" (фирма "Энергоавтоматика", Москва); "Капкан" (ООО "Проект-ресурс", Нижний Новгород); "WaveAlert Acoustic Leak Detection System" (компания Acoustic Systems Incorporated, США); "Leak and Impact / Shock Detection System L.D.S." (Франция).

Параметрические системы основаны на измерении давления и расхода продукта перекачки. Предлагаются также системы, работающие на других физических принципах, среди которых, в частности, следует отметить систему виброакустического мониторинга на основе волоконно-оптического кабеля; волоконно-оптический датчик (кабель) для обнаружения утечек нефти и нефтепродуктов; систему оперативного дистанционного контроля утечек, основанную на измерении проводимости изоляционного покрытия трубопровода.

Акустические и параметрические системы имеют преимущества по сравнению с другими благодаря более высоким техническим характеристикам и экономическим показателям. При сравнении систем существенным показателем является стоимость оборудования, его монтажа и текущего обслуживания в расчете на 1 км протяженности трубопровода. И если характеристики двух систем сравнимы, то предпочтение отдается, безусловно, экономически более привлекательной разработке.

Анализ экономических показателей позволяет условно разделить перечисленные системы на две стоимостные группы (распределенные и протяженные системы), которые отличаются способом монтажа оборудования на трубопроводе:

в распределенных системах регистрирующие модули устанавливаются на трубопроводе, как правило, на значительном расстоянии друг от друга и используют доступные каналы связи - радиоканал, спутниковый, телемеханический, оптоволоконный. К этой группе относятся акустические и параметрические системы;

в протяженных системах устанавливаемое оборудование требует прокладки вдоль трубопровода дополнительного канала связи.

Для распределенных систем стоимость оборудования, монтажа и текущего обслуживания в расчете на 1 км примерно в 10 раз ниже по сравнению с протяженными системами.

В то же время анализ технических характеристик указанных систем показывает, что они обеспечивают регистрацию крупных утечек, сопровождающихся падением давления, и имеют предел чувствительности, который составляет около 1 % производительности трубопровода. При этом утечки с низкой интенсивностью (менее 1 %) такие системы не регистрируют. Так, например, при производительности 2000 м 3 /ч система с чувствительностью 1 % способна обнаружить только утечку с интенсивностью 333,3 л/мин и более.

Чувствительность рассматриваемых систем ограничена "шумом" измеряемых параметров. В последнее время растет производительность магистралыных трубопроводов, что приводит к увеличению "шума" и снижению чувствительности систем. Реализация только одной функции контроля технического состояния в акустических системах является их существенным недостатком.

Для обеспечения нескольких функций, например таких, как регистрация утечек, охрана трубопровода, сопровождение (контроль местоположения) внутритрубных устройств, необходимо устанавливать 3 разные системы, что приводит к снижению и надежности при реализации отдельных функций и росту общих затрат.

Неразрушающий контроль (НК) – контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации.

Традиционные методы неразрушающего контроля (такие, как ультразвуковой, радиационный, токовихревой) обнаруживают геометрические неоднородности путем излучения в исследуемую структуру некоторой формы энергии. Акустическая эмиссия использует другой подход: во-первых, источником сигнала служит сам материал, а не внешний источник, т.е. метод является пассивным (а не активным, как большинство других методов контроля). Во-вторых, в отличие от других методов, акустистико-эмиссионный обнаруживает движение дефекта, а не статические неоднородности, связанные с наличием дефектов, т.е. метод акустической эмиссии обнаруживает развивающиеся, а потому наиболее опасные дефекты.

Рост трещины, разлом включения, расслоения, коррозия, трение, водородное охрупчивание, утечка жидкости или газа и т.п. – это примеры процессов, производящих акустическую эмиссию, которая может быть обнаружена и эффективно исследована с помощью этой технологии.

На рисунке ниже приведена иллюстрация, поясняющая метод акустико-эмисиионного контроля.

Метод АЭ контроля

При обнаружении сигнала на 1-м и 2-м приёмниках, регистрируется время прихода сигнала t1 и t2 соответственно. По зарегистрированным t1 и t2 определяется разность времени прихода сигнала ∆t = t2 – t1. Затем по известной скорости звука в материале и известным координатам приёмников вычисляются координаты источника акустической эмисии (дефекта). Схемы расположения преобразователей и их количество могут быть различными. Чем больше датчиков, тем более точно можно определить местонахождение дефекта.

Метод контроля акустической эмиссией обладает весьма высокой чувствительностью к растущим дефектам – позволяет выявить в рабочих условиях приращение трещины порядка долей миллиметра. Предельная чувствительность акустико-эмиссионной аппаратуры по теоретическим оценкам составляет порядка 1х10-6 мм2, что соответствует выявлению увеличения длины трещины протяженностью 1 мкм на величину 1 мкм.

В качестве имитатора сигналов акустической эмиссии рекомендуется использовать пьезоэлектрический преобразователь, возбуждаемый электрическими импульсами от генератора. Частотный диапазон имитационного импульса должен соответствовать частотному диапазону системы контроля. Также в качестве имитатора сигналов АЭ допускается также использовать источник Су-Нильсена [излом графитового стержня диаметром 0,3-0,5 мм, твердостью 2Т (2Н)].

Характерные особенности метода акустической эмиссии

Основными преимуществами метода акустической эмиссии перед традиционными методами неразрушающего контроля являются следующие:

Интегральность метода , которая заключается в том, что, используя один или несколько датчиков, установленных неподвижно на поверхности объекта, можно проконтролировать весь объект целиком (100% контроль). Это свойство метода особенно полезно при исследовании труднодоступных (не доступных) поверхностей контролируемого объекта.

В отличие от сканирующих методов неразрушающего контроля, метод АЭ не требует тщательной подготовки поверхности объекта контроля . Следовательно, выполнение контроля и его результаты не зависят от состояния поверхности и качества ее обработки. Изоляционное покрытие (если оно имеется) снимается только в местах установки датчиков.

Обнаружение и регистрация только развивающихся дефектов , что позволяет классифицировать дефекты не по размерам (или по другим косвенным признакам – форме, положению, ориентации дефектов), а по степени их опасности (влияние на прочность) для контролируемого объекта.

Высокая производительность , во много раз превосходящая производительность традиционных методов неразрушающего конроля, таких как ультразвуковой, радиографический, вихретоковый, магнитный и др.

Дистанционность метода – возможность проведения контроля при значительном удалении оператора от исследуемого объекта. Данная особенность метода позволяет эффективно использовать его для контроля (мониторинга) ответственных крупногабаритных конструкций, протяженных или особо опасных объектов без вывода их из эксплуатации и вреда для персонала.

Возможность отслеживания различных технологических процессов и оценка технического состояния объекта в режиме реального времени , что позволяет предотвратить аварийное разрушение контролируемого объекта.

СХЕМЫ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

6.1 . Рекомендуемые схемы проведения экспериментальных исследований, использующие калибровочный блок, приведены на рис. 2 и 3 . На рис. 2 представлена схема, в которой стеклянный капилляр 4 помещен между концом нагружающего устройства 6 и рабочей поверхностью калибровочного блока 1. Нагружающее устройство может быть выполнено в виде винта либоприспособления , позволяющего плавно увеличивать нагрузку в диапазоне 1 - 50 Ньютон (Н).

Рис. 3 . Схема измерения 2:

1 - калиброванный блок; 2 - калибруемый ПАЭ; 3 - эталонный преобразователь; 4 - капилляр; 5 - пьезопластина для измерения усилия стержня; 6 - нагружающее устройство; 7 - цифровой осциллограф; 8 - усилитель заряда; 9 - измерительный прибор

При изломе капилляра механическое возмущение в виде ступенчатой функции распространяется по поверхности блока. Время подъема функции не превышает 0,1 мкс. Величина силы измеряется с использованием пьезоэлемента 5 , размещенного в нагружающем винте и предварительно откалиброванного. Измерение силы производится с использованием усилителя заряда 8, соединенного с измерительным прибором 9.

Образцовый преобразователь (конденсаторный, лазерный либо откалиброванный пьезоэлектрический) и калибруемый ПАЭ размещают симметрично относительно источника сигнала и на одинаковом расстоянии от него - 50 - 100 мм.

Электрические сигналы, поступающие от двух преобразователей, подаются на цифровой запоминающий двухканальный осциллограф и регистрируются им, после чего производят сравнение характеристик преобразователей и определение параметров калибруемого ПАЭ. Источник:http://www.gosthelp.ru/text/RD0330099Trebovaniyakpreo.html

ВЫПОЛНИЛИ: МАСТЕРСКИХ ВИОЛЕТТА

И ВАСИЛЬЕВ ДАНИИЛ

Акустическая эмиссия (АЭ) - явление возникновения и распространения упругих колебаний(акустических волн), во времядеформациинапряжённогоматериала. Количественно АЭ - критерий целостности материала, который определяетсязвуковымизлучением материала при контрольном его нагружении. Эффект акустической эмиссии может использоваться для определения образованиядефектовна начальной стадии разрушения конструкции.

(2) Основной принцип диагностики инженерных сооружений и конструкций заключается в пассивном сборе информации с множества звуковых (и ультразвуковых) датчиков, и её обработке для последующего определения степени износа конструкции.

Целью контроля акустической эмисиией является обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии, связанными с несплошностями на поверхности или в объеме стенки сосуда, сварного соединения и изготовленных частей и компонентов.

Акустико-эмиссионный контроль технического состояния обследуемых объектов проводится только при создании в конструкции напряженного состояния, инициирующего в материале объекта работу источников акустической эмиссии. Для этого объект подвергается нагружению силой, давлением, температурным полем и т.д. Выбор вида нагрузки определяется конструкцией объекта и условиями его работы, характером испытаний.

(3) Метод контроля акустической эмиссией

Неразрушающий контроль (НК) – контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации.

Традиционные методы неразрушающего контроля (такие, как ультразвуковой, радиационный, токовихревой) обнаруживают геометрические неоднородности путем излучения в исследуемую структуру некоторой формы энергии. Акустическая эмиссия использует другой подход: во-первых, источником сигнала служит сам материал, а не внешний источник, т.е. метод является пассивным (а не активным, как большинство других методов контроля). Во-вторых, в отличие от других методов, акустистико-эмиссионный обнаруживает движение дефекта, а не статические неоднородности, связанные с наличием дефектов, т.е. метод акустической эмиссии обнаруживает развивающиеся, а потому наиболее опасные дефекты.

Такой метод позволяет очень быстро обнаруживать рост даже самых небольших трещин, разломов включений, утечек газов или жидкостей. То есть большого количества самых разнообразных процессов, производящих акустическую эмиссию.

С точки зрения теории и практики метода акустической эмиссии, абсолютно любой дефект может производить свой собственный сигнал. При этом он может проходить довольно большие расстояния (до десятков метров), пока не достигнет датчиков. Более того, дефект может быть обнаружен не только дистанционно; но и путем вычисления разницы времен прихода волн к датчикам, расположенных в разных местах.

Рост трещины, разлом включения, расслоения, коррозия, трение, утечка жидкости или газа и т.п. – это примеры процессов, производящих акустическую эмиссию, которая может быть обнаружена и эффективно исследована с помощью этой технологии.

(4) На рисунке ниже приведена иллюстрация, поясняющая метод акустико-эмисиионного контроля.

Характерные особенности метода акустической эмиссии

Основными преимуществами метода акустической эмиссии перед традиционными методами неразрушающего контроля являются следующие:

Интегральность метода , которая заключается в том, что, используя один или несколько датчиков, установленных неподвижно на поверхности объекта, можно проконтролировать весь объект целиком (100% контроль). Это свойство метода особенно полезно при исследовании труднодоступных (не доступных) поверхностей контролируемого объекта.

В отличие от сканирующих методов неразрушающего контроля, метод АЭ не требует тщательной подготовки поверхности объекта контроля . Следовательно, выполнение контроля и его результаты не зависят от состояния поверхности и качества ее обработки. Изоляционное покрытие (если оно имеется) снимается только в местах установки датчиков.

Обнаружение и регистрация только развивающихся дефектов , что позволяет классифицировать дефекты не по размерам (или по другим косвенным признакам – форме, положению, ориентации дефектов), а по степени их опасности (влияние на прочность) для контролируемого объекта.

Высокая производительность , во много раз превосходящая производительность традиционных методов неразрушающего конроля, таких как ультразвуковой, радиографический, вихретоковый, магнитный и др.

Дистанционность метода – возможность проведения контроля при значительном удалении оператора от исследуемого объекта. Данная особенность метода позволяет эффективно использовать его для контроля (мониторинга) ответственных крупногабаритных конструкций, протяженных или особо опасных объектов без вывода их из эксплуатации и вреда для персонала.

Возможность отслеживания различных технологических процессов и оценка технического состояния объекта в режиме реального времени , что позволяет предотвратить аварийное разрушение контролируемого объекта.

Максимальное соотношение эффективность-стоимость .

(5) Области применения

Метод акустической эмиссии позволяет получать огромные массивы информации, оперативно и с минимальными затратами регулировать и продлевать эксплуатационный цикл ответственных промышленных объектов, помогает в прогнозировании вероятности возникновения аварийных разрушений и катастроф. Широкие возможности метода контроля акустической эмиссии предоставляет и при исследовании различных свойств материалов, веществ, конструкций. На сегодняшний день без применения акустического контроля и мониторинга уже невозможны создание и надежная эксплуатация многих ответственных технических объектов.

Основные области применения АЭ контроля:

    Нефтегазовая и химическая промышленность;

    Трубопрокатные и металлургические предприятия;

    Тепловая и атомная энергетика;

    Железнодорожный транспорт;

    Подъемные сооружения;

    Мостовые конструкции;

    Авиационно-космическая техника;

    Бетонные и железобетонные сооружения.

Акустико эмиссионный метод – очень эффективное средство неразрушающего контроля и оценки материалов, основанное на обнаружении упругих волн, которые генерируются при внезапной деформации напряженного материала. Данные волны распространяются от источника непосредственно к датчикам, где затем преобразуются в электрические сигналы. Приборы акустико-эмиссионного контроля измеряют эти сигналы, после чего отображают данные, на основе которых происходит оценка состояния и поведения всей структуры исследуемого объекта.

Акустическая эмиссия (АЭ) - испускание объектом контроля (испытаний) акустических волн (ГОСТ 27655-88). Данное определение охватывает широкий круг явлений.

Акустическая эмиссия как физическое явление, используемое для исследования веществ, материалов, объектов, а также для их неразрушающего контроля и технической диагностики (Т Д и НК), представляет собой излучение акустических волн из объекта при протекании различных нелинейных процессов: при перестройке структуры твердого тела, возникновении турбулентности, трении, ударах и т.д.

Целями АЭ контроля являются обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии, связанными с несплошностями на поверхности или в объеме стенки сосуда, сварного соединения и изготовленных частей и компонентов.

Физической основой метода АЭ является акустическое излучение при пластической деформации твердых сред, развитии дефектов, трении, прохождении жидких и газообразных сред через узкие отверстия - сквозные дефекты. Эти процессы неизбежно порождают волны, регистрируя которые, можно судить о протекании процессов и их параметрах.

Метод АЭ позволяет оценить степень опасности дефекта, получить ин-формацию о статической прочности объекта, близости его к разрушению, определить срок безопасной эксплуатации объекта. Метод АЭ позволяет наблюдать и изучать динамику, процессы деформации, разрушения, перестройки структуры, химических реакций, взаимодействия излучения с веществом и т.д.

В зависимости от физического источника принято разделять явление АЭ на следующие виды.

1. Акустическая эмиссия материала - акустическая эмиссия, вызванная локальной динамической перестройкой структуры материала.

2. Акустическая эмиссия утечки - акустическая эмиссия, вызванная гидродинамическими и (или) аэродинамическими явлениями при протекании жидкости или газа через сквозную несплошность объекта испытаний.

3. Акустическая эмиссия трения - акустическая эмиссия, вызванная трением поверхностей твердых тел.

4. Акустическая эмиссия при фазовых превращениях - акустическая эмиссия, связанная с фазовыми превращениями в веществах и материалах.

5. Магнитная акустическая эмиссия - акустическая эмиссия, связанная с излучением звуковых волн при перемагничивании материалов.

6. Акустическая эмиссия радиационного взаимодействия - акустическая эмиссия, возникающая в результате нелинейного взаимодействия излучения с веществами и материалами.

Из перечисленных видов АЭ наибольшее применение для контроля промышленных объектов нашли первые три вида.

АЭ контроль объектов проводится только при создании или существовании в конструкции напряженного состояния, инициирующего в материале объекта работу источников АЭ. Для этого объект подвергается нагружению силой, давлением, температурным полем и т.д. Контактирующие с изделием пьезопреобразователи (рис.6.) принимают упругие волны и позволяют установить место их источника (дефекта).

Основными источниками акустической эмиссии для целей диагностики и НК технического состояния промышленных объектов являются пластическая деформация и рост трещин.

1 - объект контроля;

2 - преобразователи;

3 - усилитель;

4 - блок обработки информации с индикатором


Рис.6. Схема АЭ контроля

Выбор вида нагрузки определяется конструкцией объекта и условиями его работы, характером испытаний.

Источники АЭ

Основные параметры сигнала АЭ, используемые для оценки процесса развития трещины в объекте, следующие:

Суммарный счет АЭ N - число зарегистрированных выбросов электрического сигнала АЭ за время регистрации;

Скорость счета акустической эмиссии N - число зарегистрированных выбросов сигнала АЭ в единицу времени;

Активность акустической эмиссии N Σ - число зарегистрированных импульсов акустической эмиссии за единицу времени;

Энергия акустической эмиссии Е АЭ - акустическая энергия, выделяемая источником АЭ и переносимая волнами, возникающими в материале;

Амплитуда сигнала АЗ U m - максимальное значение сигнала АЭ. Единица измерения амплитуды акустического импульса - метр, электрического импульса - вольт.

а) АЭ при пластической деформации

Связь параметров АЭ с механическими свойствами материалов устанавливают при испытании стандартных образцов на растяжение.

Для большинства металлов максимум активности, скорости счета и эффективного значения АЭ совпадает с пределом текучести, что позволяет измерять предел текучести по параметрам АЭ. Факторы, влияющие на пластическую деформацию, в той или иной степени сказываются и на параметрах АЭ.

Генерация сигналов АЭ в стали при механических напряжениях вблизи предела текучести определяется содержанием углерода, что, в свою очередь, связано с развитием процессов образования карбида (температурой отпуска).

Для сталей, не содержащих кремний, максимум АЭ соответствует отпуску при 3000С. Кремний, задерживающий процессы образования карбида, сдвигает максимум АЭ в сторону более высоких температур отпуска.

Кривые зависимостей эффективного значения АЭ скорости счета (и других параметров) для гладких образцов различных материалов разнообразны. Однако можно выделить некоторые закономерные связи АЭ с процессом деформирования.

При уменьшении размера зерна число дислокаций в скоплении уменьшается, поскольку недостаточно пространства для накопления большого числа дислокаций. Действующие напряжения уменьшаются, что снижает энергию импульсов АЭ и уменьшает вероятность обнаружения источника АЭ при уменьшении размера зерна. Действие этих двух конкурирующих механизмов приводит к появлению максимума в зависимости числа импульсов АЭ от размера зерна.

б) АЭ при росте трещин

Наибольшую опасность представляют трещиноподобные дефекты; аварии и разрушения происходят в большинстве случаев вследствие распространения трещин. Развитие трещин представляет собой иерархический многостадийный процесс. Его параметры отображаются в параметрах сигнала АЭ. Образование трещины порождает отдельный импульс АЭ, ее развитие сопровождается формированием АЭ процесса.

Скачки хрупкой трещины, вязкое разрушение и пластическая деформация являются случайными импульсными процессами, первичными элементами которых являются единичные импульсы АЭ.

Для тонкой пластины с трещиной длиной 2а коэффициент интенсивности напряжений при однородном растягивающем напряжении а имеет вид:

Число импульсов АЭ и, соответственно, суммарная АЭ - N пропорционально числу элементарных источников в пластически-деформируемом объеме, размер которого определяется коэффициентом интенсивности напряжений К. Зависимость суммарной АЭ –N от коэффициента интенсивности напряжений К:

где m - параметр, связанный со свойствами материалов и скоростью развития разрушения (трещины); с-коэффициент условий испытаний.

в) АЭ при циклическом нагружении.

Параметры АЭ при статическом и циклическом нагружениях объектов существенно различаются. Особенностью АЭ при циклическом нагружении является быстрое уменьшение числа импульсов АЭ и их амплитуд в каждом последующем после первого нагружении. Это связано с проявлением эффекта адаптации материала к напряжениям при развитии усталостной трещины.

Типичная кривая зависимости суммарного счета АЭ от числа циклов при малоцикловой усталости приведена на рис. 7. Можно различить ряд этапов роста усталостной трещины. При первом нагружении регистрируется порядка 10 4 выбросов. В каждом последующем цикле нагружения число выбросов снижается на один - два порядка. После 5 ... 7 циклов нагружения амплитуда (энергия) сигналов АЭ уменьшается настолько, что сигналы АЭ перестают регистрироваться аппаратурой. Тем не менее, повреждения медленно накапливаются (участок ВС), поскольку в дальнейшем трещина растет.

На определенных этапах накопления повреждений в объекте происходят перераспределение напряжений и ускоренный рост трещины (участки СD и ЕF). К периоду активизации источника АЭ (область в окрестности D) можно отнести формирование макроскопической трещины. Зависимость суммарной АЭ на этапе 3 (участок СD) показывает возможность метода АЭ обнаруживать возникновение трещины и следить за ее развитием в условиях, когда никаким другим способом невозможно обнаружить какие-либо изменения в контролируемом объекте.

После образования макроскопической трещины начинается ее медленное развитие без существенного продвижения фронта трещины в глубь материала (участок DЕ). Этому периоду соответствуют импульсы АЭ, малые по амплитуде и часто не регистрируемые аппаратурой АЭ при пороге дискриминации 20 ... 30 мкВ. Относительно медленный рост усталостной трещины (УТ) имеет место до размера 1,0 мм.

При сохранении параметров циклического нагружения в дальнейшем начинается ускоренное развитие трещины с преимущественно вязким механизмом разрушения, сопровождаемое активным и достаточно мощным излучением упругих волн. Этому участку роста трещины соответствует участок ЕF.

200 400 600 800 1000 п, циклы

Рис.7. Зависимость суммарного счета АЭ от числа циклов нагружения при росте усталостной трещины

Данная стадия роста трещины заканчивается либо прорастанием трещины на всю толщину объекта, либо хрупким разрушением после достижения трещиной критического размера. В любом случае по участку ЕF можно судить о приближающемся катастрофическом разрушении или отказе объекта.

Источник АЭ, соответствующий ускоренному росту магистральной трещины, назван катастрофически активным источником.

При развитии УТ проявляются две группы процессов, сопровождающихся акустической эмиссией:

1) пластическая деформация (работа дислокационных источников любой природы, движение дислокаций, распад дислокационных комплексов, прорыв дислокационных скоплений через разнообразные границы и т. д.);

2) подрастание трещин в результате когерентных микроразрывов в сплошном материале.

Источники АЭ по степени активности делят на 4 класса (табл. 1).

В ряде случаев при усталостных испытаниях можно отметить, что излучение сигналов при равномерном росте усталостной трещины происходит не при максимальных нагрузках в цикле, а при некоторых промежуточных их значениях.

Координаты источников акустической эмиссии вычисляют по разнице времени прихода сигналов на преобразователи, расположенные на поверхности контролируемого объекта.

Аппаратура АЭ диагностики

Приборы АЭ подразделяются на одноканальные и многоканальные.

По способу использования подразделяются на: стационарные, мобильные (установленные на технических средствах перемещения), переносные.

По области применения: универсальные, специализированные.

В зависимости от ее функционального назначения и сложности выполнения: приборы производственного применения, многофункциональные приборы лабораторного и производственного применения, системы АЭ контроля.

Установки представляют собой комплекс по приему, усилению, обработке и анализу АЭ сигналов.

Характеристики приборов АЭ: число независимых каналов - до 64; стандартный частотный диапазон - 10... 2000 кГц; производительность контроля - не менее 20000 АЭ событий на канал; диапазон регистрации амплитуды импульса АЭ 16.100 дБ; библиотека высокоэффективных цифровых программируемых НЧ и ВЧ фильтров; мощные средства анализа сигналов встроенный режим излучения у каждого датчика для калибровки и самотестирования.