Активная реакция (свойства воды в аквариуме). Реакция крови и поддержание ее постоянства Что делать, если вы обнаружили у своих рыб ацидоз

Из курса химии каждый из нас помнит формулы хотя бы нескольких молекул. Даже если вы не знаете самих принципов химии, то наверняка у вас в памяти отложилась одна символическая запись - Н2О, обозначающая, что молекула воды состоит из двух атомов водорода, соединенных с атомом кислорода. Но такая молекула является химически неактивной, то есть не может вступать в реакции с другими веществами. Этот процесс возможен лишь при распаде молекул на ионы.

Не все, но определенная часть молекул воды диссоциирует на положительно заряженный катион Н+ и анион с отрицательным зарядом ОН-. Такое разделение и соединение в полную молекулу происходит постоянно, одна часть молекул распадается на ионы, а другая в это время соединяется воедино. В химически чистой воде при комнатной температуре 1/10 000 000 часть от общего числа молекул постоянно находится в диссоциированном состоянии.

Доля диссоциированных молекул может увеличиваться или уменьшаться. Колебания температуры на это явление не воздействуют, по крайней мере в пределах комнатной температуры число молекул остается прежним. Зато добавки других веществ, растворяемых в воде, сильно влияют на количество частиц.

Воздействие, оказанное на степень диссоциации, может быть троякое:

  1. Растворенное вещество не изменяет долю диссоциированных молекул. Например, вы можете растворить в воде кухонную соль (NaCl), которая продиссоциирует на ионы Na+ и С1-. Доля ионов Н+ и ОН-, составляющих воду, при этом не изменится.
  2. Растворенное вещество увеличивает концентрацию ионов Н+. Например, молекулы фосфорной кислоты Н2РО3 также продиссоциируют на два иона Н+ и один РО3-. А значит, количество ионов Н+ в растворе воды и фосфорной кислоты станет больше, в то время как число ионов ОН- не изменится.
  3. Растворенное вещество увеличивает концентрацию ионов ОН-. Например, молекулы едкого натрия (NaOH) образуют ионы Na+ и ОН-. В этом случае концентрация ионов Н+ не изменится, а ионов ОН- в растворе станет больше.

На этом можно окончить насыщенный сложными терминами пролог и сделать основные выводы. Избыток Н+ придает воде кислотные свойства, а избыток ОН- - щелочные. Там, где доля диссоциированных молекул не изменилась, вода имеет нейтральные свойства. В целом, подобная характеристика воды называется активной реакцией.

Чтобы оценить активную реакцию в цифрах, применяют так называемый водородный показатель. Он равен антилогарифму ионов Н+ в растворе, то есть для химически чистой воды antilog (1/10 000 000) = 7. Для тех, кто не очень дружит с математикой и не знает, что такое антилогарифм, обращаю внимание на количество нолей в доле диссоциированных молекул воды - оно совпадает с величиной водородного показателя. Сокращенно величину водородного показателя нейтральной воды записывают как рН 7. Сокращение рН означает pondus hydrogenii, что переводится с латинского языка как "водородный показатель".

В самом общем смысле при рН 7 вода обладает нейтральными свойствами, при рН 7 - щелочная. Для более точного указания свойств воду называют:

  • рН 1-3 - сильнокислой;
  • рН 3-5 - кислой;
  • рН 5-7 - слабокислой;
  • рН 7 - нейтральной;
  • рН 7-9 - слабощелочной;
  • рН 9-11 - щелочной;
  • рН 11-14 - сильнощелочной.

В приведенном выше примере список различных веществ, изменяющих водородный показатель, далеко не исчерпан. Все они, независимо от химического состава, оказывают влияние на эту величину. Понижают ее (или, иными словами, подкисляют воду) кислоты и их соли. Повышению водородного показателя способствует наличие в воде щелочей или щелочных солей. Часть веществ не изменяет величину водородного показателя - это нейтральные вещества.

В аквариумной практике давно применяются несколько веществ, способных повлиять на активную реакцию. Например, снижение величины рН производят с помощью кислого отвара торфа. Такое же действие имеет растворенный в воде углекислый газ. При разведении аквариумных рыбок нередко используют и ортофосфорную кислоту. Повышение величины водородного показателя производят с помощью раствора питьевой соды (Nа2НСОз). Как вы понимаете, подкислить или подщелочить воду можно любым веществом, обладающим соответствующими свойствами, но для использования в аквариуме оно не должно быть ядовитым. Поэтому приведенный список применяемых в аквариумистике веществ можно считать исчерпанным.

Нередко, говоря о водородном показателе воды, аквариумисты употребляют термины "кислотность" или "щелочность". При этом они применяют их так, будто увеличение кислотности - это то же самое, что снижение водородного показателя, и наоборот. На самом же деле это ошибка. Кислотностью называют количество кислотных остатков в воде и измеряют в мг/л, а это значит, что одна и та же кислотность может соответствовать различным значениям водородного показателя, смотря какой именно силой обладает этот кислотный остаток. Например, в одной пробе в одинаковой концентрации растворена угольная кислота, а в другой - соляная. Так как кислотные свойства соляной кислоты в сотни раз сильнее, чем угольной, то водородный показатель в растворе соляной кислоты будет намного ниже, а кислотность растворов станет при этом одинаковой. То же самое можно сказать и о щелочности. Эти термины в аквариумной практике лучше не использовать вообще.

И. Шереметьев

Активная реакция крови

Активная реакция крови (pH) обусловлена соотношением в ней Н + и OН- ионов. Кровь имеет слабощелочную реакцию. pH артериальной крови - 7,4, венозной - 7,35. Крайние пределы изменения pH, совместимые с жизнью - 7,0-7,8.

Сдвиг pH крови в кислую сторону - ацидоз, в щелочную - алкалоз. Как ацидоз, так и алкалоз могут быть дыхательными, метаболическими, компенсированными и некомпенсированными.

Кровь имеет 4 буферные системы, которые поддерживают постоянство pH.

1. Буферная система гемоглобина. Эта система представлена восстановленным гемоглобином (ННb) и его калиевой солью (КНb). В тканях Нb выполняет функцию щелочи, присоединяя Н +, а в легких функционирует как кислота, отдавая Н +.

2. Карбонат-бикарбонатная буферная система - представлена угольной кислотой в недиссоциированных и диссоциированных состояниях: Н2СO3 ↔ Н + + НСO3-. Если в крови увеличивается количество Н +, реакция идет влево. Ионы Н + связываются с анионом НСO3- с образованием дополнительного количества недиссоциированной угольной кислоты (Н2СO3). При возникновении дефицита Н + реакция идет вправо. Мощность этой системы определяется тем, что Н2СO3 в организме находится в состоянии равновесия с СО2: Н2СO3 ↔ СО2 + Н2О (реакция происходит при участии карбоангидразы эритроцитов). При росте в крови напряжения СО2 одновременно возрастает концентрация Н +. избыток

СО выделяется легкими при дыхании, a H + - почками. При уменьшении напряжения СО2 его выделение легкими при дыхании уменьшается. В конечном виде функционирования карбонат-бикарбонатной буферной системы можно представить следующим образом:

3. Фосфатная буферная система образована:

а) фосфат NaH2PO4 - функционирует как слабая кислота

б) фосфат Na2HPO4 - функционирует как щелочь.

Функционирование фосфатной буферной системы можно представить следующим образом:

Концентрация фосфатов в плазме крови мала для того, чтобы эта система играла значительную роль, однако она имеет важное значение для поддержания внутриклеточного pH и pH мочи.

4. Буферная ситема белков плазмы крови. Белки являются эффективными буферными системами, поскольку способность к диссоциации имеют как карбоксил, так и аминные свободные группы:

Значительно больший вклад в создание буферной емкости белков вносят боковые группы, способные ионизироваться, особенно имидазольное кольцо гистидина.

При клинической оценке кислотно-щелочного равновесия в комплексе показателей важное значение имеют pH артериальной крови, напряжение СО2, стандартный бикарбонат плазмы крови (standart bicarbonate - SB; составляет 22- 26 ммоль / л представляет собой содержание бикарбонатов в плазме крови, полностью насыщенной кислородом при напряжении углекислого газа 40 мм рт.ст, и температуре 37 ° С) и содержание в плазме анионов всех слабых кислот (прежде всего бикарбонаты и анионные группы белков). Все эти вместе взятые анионы называются буферными основаниями (buffer bases - ВВ). Содержание ВВ в артериальной крови составляет 48 ммоль / л.

Форменные элементы крови

Эритроциты

Имеют форму двояковогнутого диска, безъядерные. Содержание в крови: у мужчин - 4,5-5,5 млн в 1 мм 3 или 4,5-5,5 × 10 12 / л у женщин - 3,8-4,5 млн в 1 мм 3 или 3,8 -4,5 × 1010 12 / л.

Эритроцит является сложной системой, структура и функционирование которой поддерживается специальными физико-химическими механизмами для создания оптимальных условий обмена кислорода и углекислого газа. Важное место в этом занимает мембрана эритроцита. В эритроцитарной мембране различают три основные составляющие: липидный бислой, интегральные белки и цитоскелетного каркас. Выделяют пять основных белков и большое количество меньших, т. Н. минорных. Большим интегральным белком является гликофорина, который участвует в транспортировке глюкозы. Внешний конец его молекулы содержит цепочки углеводородов и несколько выступает над поверхностью мембраны. Именно на нем расположены антигенные детерминанты, которые определяют группу крови по системе АВ0.

Другим белком мембраны эритроцита является спектрин. Молекулы спектрина связываются с белками и липидами на внутренней поверхности мембраны, в том числе с Микрофиламентов актина, и формируют сетку, которая играет роль каркаса. Бислой липидов является асимметричным, и за правильность этой асимметрии соответствуют внутришньомембранни белки флипазы. В эритроцитах также присутствуют аквапорины, которые осуществляют транспортировку молекул воды. Кроме того, эритроцитарная мембрана имеет заряд и обладает избирательной проницаемостью. Сквозь нее свободно проходят газы, вода, ионы водорода, анионы хлора, гидроксильного радикала, хуже - глюкоза, мочевина, ионы калия и натрия, и она практически не пропускает большинство катионов и совсем не пропускает белки.

Мембрана эритроцитов в 100 раз эластичная, чем мембрана из латекса такой же толщины, и устойчива, чем сталь, с точки зрения структурного сопротивления.

Эритроцит содержит более 140 ферментов. Его объем составляет 90 fL, площадь поверхности составляет 140 pm, что на 40% больше площади поверхности шарика такого же объема. Эритроциты в венозной крови больше по размеру, чем в артериальной. Это связано с тем, что в процессе газообмена внутри них накапливается больше солей, вслед за которыми, по законам осмоса поступает вода.

Общая площадь поверхности всех эритроцитов составляет около 3800 м2, что в 1500 раз больше площади поверхности тела человека!

Размер эритроцита мыши и слона примерно одинаковый!

Формирования и поддержания формы двояковогнутого диске обеспечивается рядом механизмов. Ключевую роль в этом играют тесная связь мембранных белков с белками цитоскелета, различные виды ионного транспорта через мембрану и изотоничность осмотического давления. Интересен факт, что в зависимости от колебаний этого давления, объем эритроцита может меняться в пределах нормы от 20 до 200 fL, но концентрация гемоглобина поддерживается в очень узких пределах (30-35 g / dL). Это связано с тем, что эритроцитарный объем и форма также зависит и от вязкости цитоплазмы, которая обеспечивается концентрацией гемоглобина. Установлено, что вязкость гемоглобина при его концентрации 27 g / dL составляет 0,05 Па, что в 5 раз больше вязкости воды. При концентрации 37 g / dL - 0,15 Па, возрастает до 0,45 Па при концентрации 40 g / dL, составляет 0,170 Па при 45 g / dL и достигает 650 Па при 50 g / dL. Поэтому концентрация гемолобину играет важную роль в поддержании объема красных кровяных телец.

Образуются в красном костном мозге, разрушаются в печени и селезенке. Продолжительность жизни - 120 суток. Для образования эритроцитов необходимы "строительные материалы" и стимуляторы этого процесса. Для синтеза гема в сутки необходимо 20-25 мг железа, поступления витаминов В12, С, В2, В6, фолиевой кислоты.

Каждый час кровь циркулирует в организме, покидают 5000000000 старых эритроцитов, 1000000000 старых лейкоцитов и 2 миллиарда тромбоцитов. Столько же новых форменных элементов поступает в нее из красного костного мозга. Таким образом, за сутки полностью меняется 25 грамм массы крови. В плазме является С секстильоны различных молекул. Это огромное количество молекул белков, углеводов, жиров, солей, витаминов, гормонов, ферментов. Все они постоянно обновляются, распадаются и вновь синтезируются, а состав крови остается постоянным!

Увеличение количества эритроцитов крови - эритроцитоз , уменьшение - эритропения .

Функции эритроцитов:

1) дыхательная;

2) питательная;

3) защитная;

4) ферментативная;

5) регуляция pH крови.

В состав эритроцитов входит гемоглобин, который является гемпротеидом. Нb участвует в транспорте O2 и СО2. Состоит гемоглобин с белковой и небелковой частей: глобина и гема. Гем удерживает атом Fe2 +. Содержание Нb у мужчин 14-16 г /%, или 140-160 г / л; у женщин: 12-14 г /%, или 120-140 г / л.

В крови гемоглобин может быть в виде нескольких соединений:

1) Оксигемоглобин - Нb + O2 (в артериальной крови), соединения, легко распадается. 1 г гемоглобина присоединяет 1,34 мл O2.

2) карбгемоглобин Нb + СО2 (в венозной крови), легко распадается.

3) Карбоксигемоглобин Hb + СО (угарный газ), очень стойкое соединение. Нb теряет сродство к 02.

4) Метгемоглобин образуется в случае попадания в организм сильных окислителей. В результате в геми Fe2 + превращается в Fe3 +. Накопление большого количества такого гемоглобина делает транспорт O2 невозможным и организм погибает.

Гемолиз - это разрушение оболочки эритроцитов и выход Нb в плазму крови.

Уменьшение осмотического давления вызывает набухание эритроцитов, а затем их разрушения (осмотическое гемолиз). По мере осмотического устойчивости (резистентности) эритроцитов является концентрация NaCl, при которой начинается гемолиз. У человека это происходит в 0,45-0,52% растворе (минимальная осмотическая резистентность), в 0,28-0,32% растворе разрушаются все эритроциты (максимальная осмотическая резистентность).

Химический гемолиз - происходит под влиянием веществ, которые разрушают оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол).

Механический гемолиз - возникает при сильных механических воздействий на кровь.

Термический гемолиз - замораживание с последующим нагреванием.

Биологический - переливание несовместимой крови, укусы змей.

Цветовой показатель - характеризует соотношение количества гемоглобина и числа эритроцитов в крови и, тем самым, степень насыщенности каждого эритроцита гемоглобином. В норме составляет 0,85-1,0. Определяют цветовой показатель по формуле: 3 × Нb (в г / л) / три первые цифры количества эритроцитов в мкл.

СОЭ (скорость оседания эритроцитов). У мужчин СОЭ - 2-10 мм / час, у женщин СОЭ - 1-15 мм / час. Зависит от свойства плазмы и прежде всего от содержания в плазме белков глобулинов и фибриногена. Количество глобулинов увеличивается при воспалительных процессах.

Количество фибриногена увеличивается у беременных женщин в 2 раза и СОЭ при этом достигает 40-50 мм / час.

Активная реакция крови, обусловленная концентрацией в ней водородных (Н") и гидроксильных (ОН") ионов, имеет чрезвычайно важное биологическое значение, так как процессы обмена протекают нормально только при определенной реакции.

Кровь имеет слабо щелочную реакцию. Показатель активной реакции (рН) артериальной крови равен 7,4; рН венозной крови вследствие большего содержания в ней углекислоты равен 7,35. Внутри клеток рН несколько ниже и равен 7 - 7,2, что зависит от метаболизма клеток и образования в них кислых продуктов обмена.

Активная реакция крови удерживается в организме на относительно постоянном уровне, что объясняется буферными свойствами плазмы и эритроцитов, а также деятельностью выделительных органов.

Буферные свойства присущи растворам, содержащим слабую (т. е. малодиссоциированную) кислоту и ее соль, образованную сильным основанием. Прибавление к подобному раствору сильной кислоты или щелочи не вызывает такого большого сдвига в сторону кислотности или щелочности, как в том случае, если прибавить то же количество кислоты или щелочи к воде. Это объясняется тем, что прибавленная сильная кислота вытесняет слабую кислоту из ее соединений с основаниями. В растворе при этом образуется слабая кислота и соль сильной кислоты. Буферный раствор, таким образом, препятствует сдвигу активной реакции. При добавлении к буферному раствору сильной щелочи образуется соль слабой кислоты и вода, вследствие чего возможный сдвиг активной реакции в щелочную сторону уменьшается.

Буферные свойства крови обусловлены тем, что в ней содержатся следующие вещества, образующие так называемые буферные системы: 1) угольная кислота - двууглекислый натрий (карбонатная буферная система)-, 2) одноосновный - двухосновный фосфорнокислый натрий (фосфатная буферная система), 3) белки плазмы (буферная система белков плазмы)-, белки, будучи амфолитами, способны отщеплять как водородные, так и гидроксильные ионы в зависимости от реакции среды; 4) гемоглобин - калийная соль гемоглобина (буферная система гемоглобина). Буферные свойства красящего вещества крови - гемоглобина - обусловлены тем, что он, будучи кислотой более слабой, чем H 2 CO 3 , отдает ей ионы калия, а сам, присоединяя Н"-ионы, становится очень слабо диссоциирующей кислотой. Примерно 75% буферной способности крови обусловлено гемоглобином. Карбонатная и фосфатная буферные системы имеют для сохранения постоянства активной реакции крови меньшее значение.

Буферные системы имеются также в тканях, благодаря чему рН тканей способен сохраняться на относительно постоянном уровне. Главными буферами тканей являются белки и фосфаты. Вследствие наличия буферных систем образующиеся в клетках в ходе процессов обмена веществ углекислота, молочная, фосфорная и другие кислоты, переходя из тканей в кровь, не вызывают обычно значительных изменений ее активной реакции.

Характерным свойством буферных систем крови является более легкий сдвиг реакции в щелочную, чем в кислую сторону. Так, для сдвига реакции плазмы крови в щелочную сторону приходится прибавлять к ней в 40-70 раз больше едкого натра, чем к чистой воде. Для того же чтобы вызвать сдвиг ее реакции в кислую сторону, к ней необходимо добавить в 327 раз больше соляной кислоты, чем к воде. Щелочные соли слабых кислот, содержащиеся в крови, образуют так называемый щелочной резерв крови. Величину последнего можно определить по тому количеству кубических сантиметров углекислоты, которое может быть связано 100 мл крови при давлении углекислоты, равном 40 мм рт. ст., т. е. приблизительно соответствующем обычному давлению углекислоты в альвеолярном воздухе.

Так как в крови имеется определенное и довольно постоянное отношение между кислотными и щелочными эквивалентами, то принято говорить о кислотно-щелочном равновесии крови.

Посредством экспериментов над теплокровными животными, а также клиническими наблюдениями установлены крайние, совместимые с жизнью пределы изменений рН крови. По-видимому, такими крайними пределами являются величины 7,0-7,8. Смещение рН за эти пределы влечет за собой тяжелые нарушения и может привести к смерти. Длительное смещение рН у человека даже на 0,1-0,2 по сравнению с нормой может оказаться гибельным для организма.

Несмотря на наличие буферных систем и хорошую защищенность организма от возможных изменений активной реакции крови, сдвиги в сторону повышения ее кислотности или щелочности все же иногда наблюдаются при некоторых условиях как физиологических, так в особенности патологических. Сдвиг активной реакции в кислую сторону называется ацидозом, сдвиг в щелочную сторону - алкалозом.

Различают компенсированный и некомпенсированный ацидоз и компенсированный и некомпенсированный алкалоз. При некомпенсированном ацидозе или алкалозе наблюдается действительный сдвиг активной реакции в кислую или щелочную сторону. Это происходит вследствие исчерпания регуляторных приспособлений организма, т. е. тогда, когда буферные свойства крови оказываются недостаточными для того, чтобы воспрепятствовать изменению реакции. При компенсированном ацидозе или алкалозе, которые наблюдаются чаще, чем некомпенсированные, не происходит сдвига активной реакции, но уменьшается буферная способность крови и тканей. Понижение буферности крови и тканей создает реальную опасность перехода компенсированных форм ацидоза или алкалоза в некомпенсированные.

Ацидоз может возникнуть, например, вследствие увеличения содержания в крови углекислоты или вследствие уменьшения щелочного резерва. Первый вид ацидоза -газовый ацидоз наблюдается при затрудненном выделении углекислоты из легких, например при легочных заболеваниях. Второй вид ацидоза негазовый, он встречается при образовании в организме избыточного количества кислот, например при диабете, при почечных болезнях. Алкалоз также может быть газовым (усиленное выделение CO 3) и негазовым (увеличение резервной щелочности).

Изменения щелочного резерва крови и незначительные изменения ее активной реакции всегда происходят в капиллярах большого и малого круга кровообращения. Так, поступление большого количества углекислоты в кровь тканевых капилляров вызывает закисление венозной крови на 0,01-0,04 рН по сравнению с артериальной кровью. Противоположный сдвиг активной реакции крови в щелочную сторону происходит в легочных капиллярах в результате перехода углекислого газа в альвеолярный воздух.

В сохранении постоянства реакции крови имеет большое значение деятельность дыхательного аппарата, обеспечивающего удаление избытка углекислоты путем усиления вентиляции легких. Важная роль в поддержании реакции крови на постоянном уровне принадлежит также почкам и желудочно-кишечному тракту, выделяющим из организма избыток как кислот, так и щелочей.

При сдвиге активной реакции в кислую сторону, почки выделяют с мочой увеличенные количества кислого одноосновного фосфата натрия, а при сдвиге в щелочную сторону происходит выделение с мочой значительных количеств щелочных солей: двухосновного фосфорнокислого и двууглекислого натрия. В первом случае моча становится резко кислой, а во втором - щелочной (рН мочи в нормальных условиях равен 4,7- 6,5, а при нарушениях кислотно-щелочного равновесия может достигать 4,5 и 8,5).

Выделение относительно небольшого количества молочной кислоты осуществляется также потовыми железами.

Биохимия

Электронный дидактический комплекс (ЭДК)

Настоящий электронный дидактический комплекс (ЭДК) объединяет в себе несколько функций учебных материалов:

  • Информационная текстовая часть учебного курса «биохимия животных с основами физколлоидной химии».
  • Наглядные материалы (рисунки, схемы, таблицы).
  • Материалы для самоконтроля знаний обучающихся.

В текстовой части кратко изложены основные термины и понятия с выделением ключевых слов. В дополнительный блок ЭДК помещены краткие учебные пособия, методические разработки по биохимии животных.

Составители: з аведующий кафедрой органической и биологической химии Казанской государственной академии ветеринарной медицины доктор ветеринарных наук профессор Хазипов Нариман Залилович, доцент кафедры биохимии Казанского государственного университета Аскарова Альфия Наримановна, доценты кафедры органической и биологической химии Казанской государственной академии ветеринарной медицины доктор биологических наук Логинов Георгий Павлович, Тюрикова Раиса Павловна, Закирова Лилия Азатовна, ассистент кафедры Казанской государственной академии ветеринарной медицины Шилова Светлана Вячеславовна.

Техническое исполнение осуществлено кандидатом ветеринарных наук ассистентом КГАВМ Усольцевым Константином Валерьевичем.

При разработке ЭДК были использованы учебники «Биохимия животных» (Н.З.Хазипов, А.Н.Аскарова, 2003 г.), «Биохимия» (В.П.Козлов, В.Н.Шведова, 2004 г.), «Физическая и коллоидная химия» (М.М.Равич-Щербо, В.В.Новиков, 1975), «Методическое пособие по физической и коллоидной химии» (Р.П.Тюрикова, 2001 г.).

ФИЗИЧЕСКАЯ ХИМИЯ

ВОДА

Как известно, жизнь зародилась в воде и по-прежнему остается тесно связанной с во­дой. Вода является источником кислорода в атмосфере Земли. Это происходит при фотосинтезе в растениях, при этом энергия света преобразуется в энергию химических связей молекул. Животный мир может использовать только энергию, освободившуюся из этих химических связей в форме АТФ и других трифосфатов.

Вода составляет от 50 до 98% от общей массы организма. Каждая клетка и каждая ткань содержит определенное количество воды, так кожа содержит 72%, сердце – 79%, спинной и головной мозг – 70%, кровь – 79%, лимфа – 96%. С помощью воды осуществляется перенос питательных веществ и продуктов обмена веществ; вода играет важную роль в осмотических явлениях, в сохранении коллоидного состояния протоплазмы и т.д.

Вода обеспечивает растворение веществ, процессы всасывания, передвижения, набухания, осмоса и многих других. Высокая теплоемкость, теплопроводность, теплота испарения воды способствует поддержанию температуры тела у теплокровных животных. Она участвует в реакциях гидролиза, вызывает диссоциацию молекул (электролитов). Вода – конечный продукт обмена веществ в организме


Уникальные свойства воды Н 2 О становятся очевидными при сравнении с метаном (СН 4). Обе молекулы одинаковы по массе и разме­рам. Тем не менее температура кипения воды на 250°С выше по сравнению с температурой кипения метана. В результате вода на поверх­ности Земли находится в жидком, а метан – в газообразном состоянии. Высокая точка ки­пения воды является следствием высокой те­плоемкости испарения, что в свою очередь обусловлено неравномерным распределением электронной плотности в молекуле воды. Молекула воды имеет форму тетраэдра, в центре которого расположен атом кислорода. Две вершины тетраэдра заняты свободными электронными парами атома кислорода, а остальные две – атомами во­дорода. Поэтому связи Н-О-Н расположе­ны под углом друг к другу. Кроме того, из-за высокой электроотрицательности атома кис­лорода связь О-Н полярна. т. е. мо­лекула воды представляет собой электриче­ский диполь .

Каждая молекула тетраэдрически координирована с четырьмя другими молекулами воды, благодаря водородным связям энергия диссоциации водородной связи составляет 25 кДж/моль.

Биполярное строение молекул воды благо­приятствует образованию водородных связей. Поэтому у воды в жидком состоянии многие молекулы связа­ны между собой водородными «мостиками». Часто образуются тетраэдрические структуры, так называемые "кластеры" во­ды. Поскольку в твер­дом состоянии расстояние между молеку­лами в среднем больше, чем в жидкости, плотность льда меньше по сравнению с плотностью воды. Это свойство воды очень важно в экологическом отношении, т.к. зимой на поверхности водо­емов образуется слой льда, и они редко промерзают до дна.

Вода имеет высокую константу диэлектрической про­ницаемости, т.е. в воде электростати­ческое притяжение двух противоположно заряженных ионов снижается примерно в 80 раз.

В этом полярном растворителе (воде) хорошо растворяются полярные молекулы. Они окружаются молекулами воды, происходит гидратация молекул.

Электростатические силы притяжения удерживают молекулы воды, тем самым разрушая межионные или внутримолекулярные связи самой гидратированной молекулы.

Рис.1.1. Электростатические силы притяжения

АКТИВНАЯ РЕАКЦИЯ ВОДНЫХ РАСТВОРОВ

Под активной реакцией среды понимают концентрацию водородных ионов. В числе различных физико-химических защитных констант организма таких, как изотермия, изотония и другие постоянство концентрации водородных ионов – изогидрия – имеет особо важное значение для биологических процессов организма. Физико-химическое состояние белков, каталитическая функция ферментов, активность солевых ионов зависят от концентрации ионов водорода.

Активная реакция среды (pH)

В природных водоемах часть молекул воды (а также и других веществ) находится в состоянии диссоциации, т.е. в виде положительно (катионы) и отрицательно (анионы) заряженных ионов. Так, молекула воды диссоциирует на ион водорода (Н +) и ион гидроксила (ОН"):

Скорости диссоциации и образования молекул воды равны, поэтому концентрация ионов водорода и гидроксила в воде является постоянной величиной - константой равновесия воды, которая равна 10" 14 моль 2 /кг 2 . В чистой воде концентрации Н*и ОН - равны, поэтому концентрация каждого иона равна 10" 7 моль/кг. Если в растворе количество ионов водорода больше, чем ионов гидроксила, то раствор кислый; при избытке ионов гидроксила раствор становится щелочным. Таким образом, концентрация каждого из ионов - водорода и гидроксила - является мерой кислотности или щелочности раствора. Концентрация водородных ионов или активная реакция среды, выражается показателем pH. Он используется для характеристики кислотности и щелочности раствора. Концентрацию этих ионов в связи с малой величиной принято обозначать в виде их логарифмов, взятых с обратным знаком. Если раствор нейтральный, то концентрация ионов водорода равна 10" 7 моль/кг и pH - (-lgl0~ 7 моль/кг) 7. В щелочной среде pH > 7, в кислой pH

В природных водоемах активная реакция среды редко бывает нейтральной и подвержена значительным колебаниям. Это связано с тем, что в среде находятся и другие вещества, способные распадаться на ионы, нарушающие равновесие между ионами Н* и ОН". Таким образом, активная реакция характеризует состояние веществ в растворе.

Все пресноводные бассейны можно объединить в две основные группы: воды нейтрально-щелочные с pH > 6 и воды торфяные с pH

В природных водоемах величина pH зависит от многих физикохимических и биологических факторов, из которых наибольшее значение имеет наличие в среде углекислоты и углекислых солей - карбонатов и бикарбонатов. Эти вещества в основном регулируют pH среды как в морских, так и в пресных водоемах. При растворении С0 2 в воде образуется угольная кислота, которая диссоциирует с образованием ионов Н + и HCOJ и способствует, таким образом, подкислению воды. Углекислые соли находятся в водоемах в виде карбонатов и бикарбонатов. В растворах эти соли диссоциируют с образованием гидроксильных ионов, в результате чего происходит подщелачивание воды.

На изменение величины pH большое влияние оказывают происходящие в водоемах биологические процессы. Дыхание гидро- бионтов, разложение органического вещества, сопровождающиеся выделением С0 2 , повышают кислотность воды. Потребление С0 2 растениями при фотосинтезе, наоборот, подщелачивает среду. Летом при интенсивном развитии фитопланктона и прибрежных водных растений в поверхностных слоях воды значения pH повышаются до 9 -10.

Сильное подщелачивание воды во время развития растений связано не только с тем, что они потребляют свободную углекислоту, но и с тем, что в этот период в воде накапливаются карбонаты: растения отщепляют углекислоту от бикарбонатов, переводя их тем самым в карбонаты.

В морских водоемах активная реакция среды слабощелочная. Она практически постоянна и колеблется лишь в пределах от 8,0 до 8,3. Это связано с сильной забуференностью среды и относительно слабым развитием фитопланктона.

В пресных водоемах активная реакция среды испытывает сезонные колебания. Зимой в результате замедления жизнедеятельности организмов pH составляет 7,0 -7,5, летом она возрастает, а в периоды цветения водорослей и активной вегетации водных растений достигает 9-10. Наблюдаются и суточные изменения величины pH, в основном летом, что связано с высокой активностью биологических процессов в дневное время. Изменяется значение pH и с глубиной: в придонных слоях, где отсутствует фотосинтез, кислотность воды повышается (Н. А. Березина, 1973).

В водоемах кислого типа pH среды более постоянен и меньше зависит от жизнедеятельности организмов, так как их население очень бедно. Подкисление болотных вод связано также с деятельностью мха сфагнума, способного избирательно адсорбировать различные катионы солей, замещая их водородными ионами. За счет этого pH понижается до 4; когда наступает ионное равновесие, процесс обмена приостанавливается (К. А. Кокин, 1982).

Активная реакция среды оказывает влияние на жизнедеятельность водных организмов. Это влияние может быть как прямым, так и косвенным. Косвенное влияние проявляется через изменение содержания в воде различных соединений макро- и микроэлементов, растворимость которых (а соответственно и доступность для водных организмов) во многом зависит от величины pH. Так, ряд водорослей не может существовать при слишком высоких значениях pH из-за низкой растворимости многих микроэлементов.

Непосредственное влияние pH среды на организм сводится к воздействию водородных и гидроксильных ионов на проницаемость клеточных мембран, а соответственно и на их метаболизм.

Активная реакция среды определяет наличие в среде биогенных элементов и степень их доступности для прибрежно-водной растительности и фитопланктона. Это связано с тем, что многие элементы в щелочной среде переходят в нерастворимую форму, тогда как в кислой среде растворимость их и, следовательно, доступность для растений повышается.

Активная реакция среды имеет большое экологическое значение. Изменение pH среды влияет на выживаемость организмов, интенсивность питания, рост, уровень газообмена и другие жизненные процессы. Величина pH оказывает влияние и на водную растительность, в первую очередь погруженную. Наиболее благоприятные условия для развития прибрежно-водных растений - это слабощелочные воды; в кислых водоемах они растут значительно хуже. Погруженная водная растительность в большей степени, чем растения с плавающими и надводными листьями, зависит от величины pH, состава и концентрации газов, химического состава илов.