Вещества образующиеся при дыхании животных. Дыхание у растений происходит в клетках органов

Дыхание является самой совершенной формой окислительного процесса и наиболее эффективным способом получения энергии. Главное преимущество дыхания состоит в том, что энергия окисляемого вещества - субстрата, на котором микроорганизм растет, используется наиболее полно. Поэтому в процессе дыхания перерабатывается гораздо меньше субстрата для получения определенного количества энергии, чем, например, при брожениях.


Процесс дыхания заключается в том, что углеводы (или белки, жиры и другие запасные вещества клетки) разлагаются, окисляясь кислородом воздуха, до углекислого газа и воды. Выделяющаяся при этом энергия расходуется на поддержание жизнедеятельности организмов, рост и размножение. Бактерии вследствие ничтожно малых размеров своего тела не могут накапливать значительного количества запасных веществ. Поэтому они используют в основном питательные соединения среды.


В общем виде дыхание можно представить следующим уравнением:



За этой простой формулой скрывается сложная цепь химических реакций, каждая из которых катализируется специфическим ферментом.


Ферментативные реакции, происходящие в процессе дыхания, в настоящее время хорошо изучены. Схема реакций оказалась универсальной, т. е. в принципе одинаковой у животных, растений и многих микроорганизмов, в том числе бактерий. Процесс дыхания при окислении глюкозы складывается из следующих основных этапов (рис. 10).



Сначала происходит образование фосфорных эфиров глюкозы - монофосфата, затем дифосфата. Фосфорная кислота переносится определенными ферментами (трансферазами) с аденозинтрифосфорной кислоты (АТФ) - вещества, имеющего три остатка фосфорной кислоты, соединенных макроэргическими связями. (На присоединение фосфорной кислоты тратится 3,4-10/4 дж энергии на 1 грамм-молекулу. Поэтому образовавшаяся связь называется макроэргической.) Биологический смысл первых реакций фосфорилирования заключается в активировании глюкозы - присоединение фосфора к глюкозе делает ее более реакционноспособной, лабильной, определяет возможность дальнейшего расщепления глюкозы.


Активированная глюкоза в форме дифосфата далее расщепляется на два триозофосфата (трехуглеродные соединения): фосфоглицериновый альдегид и диоксиацетонфосфат, которые могут обратимо превращаться друг в друга.


Далее в обмен вступает фосфоглицериновый альдегид, он окисляется в дифосфоглицериновую кислоту. Назначение этого процесса заключается в отщеплении атомов водорода от окисляемого субстрата и переносе водорода с помощью специфических окислительных ферментов к кислороду воздуха (см. рис. 10, 11).


,


Водород от фосфоглицеринового альдегида присоединяется к ферменту - никотинамиддинуклеотиду (НАД); при этом альдегид окисляется до кислоты и выделяется энергия. Часть этой энергии тратится на образование АТФ; при этом присоединяется фосфорная кислота к аденозиндифосфату- АДФ. При гидролизе АТФ энергия освобождается и может быть затрачена на различные процессы синтеза белка и другие нужды клетки.


Фосфоглицериновая кислота окисляется до пировиноградной кислоты. При этом также образуется АТФ, т. е. запасается энергия.


На этом завершается первая - анаэробная - стадия процесса дыхания, которая носит название гликолитического пути или пути Эмбдена - Мейергофа - Парнаса . Для осуществления этих реакций кислород не требуется. Образовавшаяся пировиноградная кислота (СН3СОСООН) является интереснейшим и очень важным соединением. Пути расщепления глюкозы в процессе дыхания и многих брожений, вплоть до образования пировиноградной кислоты, идут совершенно одинаково, что впервые было установлено русским биохимиком С. П. Костычевым. Пировиноградная кислота является тем центральным пунктом, от которого расходятся пути дыхания и брожений, откуда начинается специфическая для данного процесса цепь ферментативных превращений - специфическая цепь химических реакций (рис. 11).



В процессе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот (рис. 12). Это сложный замкнутый круг превращений, в результате которых образуются органические кислоты с 4, 5 и 6 атомами углерода (яблочная, молочная, фумаровая, а-кетоглутаровая и лимонная) и отщепляется углекислота.



Прежде всего от пировиноградной кислоты, содержащей три атома углерода, отщепляется CO2 - образуется уксусная кислота, которая с коферментом А образует активное соединение - ацетилкоэнзим А. Он передает остаток уксусной кислоты (ацетил) на щавелевоуксусную кислоту (4 атома углерода), и образуется лимонная кислота (6 атомов углерода). Лимонная кислота претерпевает несколько превращений, в результате выделяется СО2 и образуется пятиуглеродное соединение - а-кетоглутаровая кислота. От нее тоже отщепляется СО2 (третья молекула углекислого газа), и образуется янтарная кислота (4 атома углерода), которая затем превращается в фумаровую, яблочную и, наконец, щавелевоуксусную кислоту. На этом цикл замыкается. Щавелевоуксусная кислота снова может вступить в цикл.


Таким образом, в цикл вступает трехуглеродная пировиноградная кислота, и по ходу превращений выделяются 3 молекулы С02.


Водород пировиноградной кислоты, освобождающийся при дегидрировании в аэробных условиях, не остается свободным - он поступает в дыхательную цепь (так же, как водород глицеринового альдегида, отнятый при превращении его в глицериновую кислоту). Это - цепь окислительных ферментов.


Ферменты, которые первыми берут на себя водород от окисляемого субстрата, называются первичными дегидрогеназами.


В их состав входят ди- или трипиридин-нуклеотиды: НАД или НАДФ и специфический белок. Механизм присоединения водорода - один и тот же:


Окисляемое вещество - H2 + НАД -> окисленное вещество + НАД-Н2


Водород, полученный дегидрогенаэой, затем присоединяется к следующей ферментной системе - флавиновым ферментам (ФМН или ФАД).


От флавиновых ферментов электроны попадают нацитохромы - железосодержащие протеиды (сложные белки). По цепи цитохромов передается не атом водорода, а только электроны. При этом происходит изменение валентности железа:


Fe++-> е -> Fe+++


Заключительная реакция дыхания - это присоединение протона и электрона к кислороду воздуха и образование воды. Но прежде происходит активирование молекулы кислорода под действием фермента цитохромоксидазы. Активирование сводится к тому, что кислород приобретает отрицательный заряд за счет присоединения электрона окисляемого вещества. К активированному кислороду присоединяется водород (протон), образуя воду.


Кроме упомянутой цепи переносчиков электронов и водорода, известны и другие. Процесс этот гораздо более сложен, чем изложенная схема.


Биологический смысл этих превращений заключается в окислении веществ и образовании энергии. В результате окисления молекулы сахара (глюкозы) в АТФ запасается 12,6- 10/5 дж энергии, в самой молекуле сахара содержится 28,6-10/5 дж, следовательно, полезно используется 44% энергии. Это очень высокий коэффициент полезного действия, если сравнить его с к. п. д. современных машин.


В процессе дыхания образуется огромное количество энергии. Если вся она выделилась бы сразу, то клетка перестала бы существовать. Но этого не происходит, потому что энергия выделяется пе вся сразу, а ступенчато, небольшими порциями. Выделение энергии небольшими дозами обусловлено тем, что дыхание представляет собой многоступенчатый процесс, на отдельных этапах которого образуются различные промежуточные продукты (с разной длиной углеродной цепочки) и выделяется энергия. Выделяющаяся энергия не расходуется в виде тепла, а запасается в универсальном макроэргическом соединении - АТФ. При расщеплении АТФ энергия может использоваться в любых процессах, необходимых для поддержания жизнедеятельности организма: на синтез различных органических веществ, механическую работу, поддержание осмотического давления протоплазмы и т. д.


Дыхание является процессом, дающим энергию, однако его биологическое значение этим не ограничивается. В результате химических реакций, сопровождающих дыхание, образуется большое количество промежуточных соединений. Из этих соединений, имеющих различное количество углеродных атомов, могут синтезироваться самые разнообразные вещества клетки: аминокислоты, жирные кислоты, жиры, белки, витамины.


Поэтому обмен углеводов определяет остальные обмены веществ (белков, жиров). В этом его огромное значение.


С процессом дыхания, его химическими реакциями связано одно из удивительных свойств микробов - способность испускать видимый свет - люминесцировать.


Известно, что ряд живых организмов, в том числе бактерии, могут испускать видимый свет. Люминесценция, вызываемая микроорганизмами, известна уже в течение столетий. Скопление люминесцирующих бактерий, находящихся в симбиозе с мелкими морскими животными, иногда приводит к свечению моря; с люминесценцией встречались также при росте некоторых бактерий на мясе и т. д.


К основным компонентам, взаимодействие между которыми приводит к испусканию света, относятся восстановленные формы ФМН или НАД, молекулярный кислород, фермент люцифераэа и окисляемое соединение - люциферин. Предполагается, что восстановленные НАД или ФМН реагируют с люциферазой, кислородом и люциферином, в результате чего электроны в некоторых молекулах переходят в возбужденное состояние и возвращение этих электронов на основной уровень сопровождается испусканием света. Люминесценцию у микробов рассматривают как «расточительный процесс», так как при этом энергетическая эффективность дыхания снижается.

Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


Синонимы :

Смотреть что такое "Дыхание" в других словарях:

    ДЫХАНИЕ - ДЫХАНИЕ. Содержание: Сравнительная физиология Д.......... 534 Дыхательный аппарат............. 535 Механизм вентиляции легких......... 537 Регистрация дыхательных движении..... 5 S8 Частота Д., сила дыхат. мышц и глубина Д. 539 Классификация и… … Большая медицинская энциклопедия

    Одна из основных жизненных функций, совокупность пропессов, обеспечивающих поступление в организм О2, использование его в окислительно восстановительных процессах, а также удаление из организма СО2 и нек рых др. соединений, являющихся конечными… … Биологический энциклопедический словарь

    Испустить дыхание, спирается в зобу дыханье.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. дыхание респирация, полипноэ, перспирация, чухалка, дух, дуновение, дуновенье, веяние Словарь … Словарь синонимов

    Современная энциклопедия

    Совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для… … Большой Энциклопедический словарь

    ДЫХАНИЕ, дыхания, ср. (книжн.). Действие по гл. дышать. Прерывистое дыхание. Искусственное дыхание (приемы, применяемые для возобновления деятельности легких при временном ее прекращении; мед.). || Процесс поглощения кислорода живым организмом… … Толковый словарь Ушакова

    ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Иллюстрированный энциклопедический словарь

    ДЫХАНИЕ, процесс, в ходе которого воздух поступает в легкие и выводится из них с целью ГАЗООБМЕНА. При вдохе мыщцы диафрагмы поднимают ребра, увеличивая тем самым объем ГРУДНОЙ КЛЕТКИ, и воздух поступает в ЛЕГКИЕ. При выдохе ребра опускаются, и … Научно-технический энциклопедический словарь

    ДЫХАНИЕ, я, ср. 1. Процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Клеточное д. (спец.). 2. Втягивание и выпускание воздуха лёгкими. Ровное д. Сдерживать д. Д. весны (перен.). Второе дыхание прилив… … Толковый словарь Ожегова

Образующиеся в ходе фотосинтеза сахара и другие органические соединения используются клетками растительного организма в качестве питательных веществ. Клетки незеленых частей и все клетки растения в темноте питаются веществами углеводной природы гетеротрофно и в этом принципиально не отличаются от животных клеток. Важнейшим этапом питания органическими веществами на клеточном уровне является процесс дыхания.

Клеточное дыхание - это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.

Научные основы учения о роли кислорода в дыхании были заложены трудами A. Л. Лавуазье. В 1774 г. кислород независимо открыли Пристли и Шееле, а Лавуазье дал название этому элементу. Изучая одновременно процесс дыхания животных и горение, Лавуазье в 1773 - 1783 гг. пришел к выводу. что при дыхании, как и при горении, поглощается 0 2 и образуется С0 2 , причем в том и другом случаях выделяется теплота. На основании своих опытов он заключил, что процесс горения состоит в присоединении кислорода к субстрату и что дыхание есть медленно текущее горение питательных веществ в живом организме.

Я. Ингенхауз в 1778-1780 гг. показал, что зеленые растения в темноте, а незеленые части растений и в темноте, и на свету поглощают кислород и выделяют С0 2 так же, как животные. Основателем учения о дыхании растений считают Н. Т. Соссюра. В 1797-1804 гг., впервые широко использовав количественный анализ, он установил, что в темноте растения поглощают столько же кислорода, сколько выделяется С0 2 , т.е. соотношение С0 2 /0 2 , как правило, равно 1. При этом одновременно с С0 2 образуется и вода. Мнение Соссюра о том. что описанный им газообмен у растений является процессом дыхания и что этот процесс обеспечивает растительный организм энергией, долгое время не признавалось. Утверждалось, что в ночное время растения выделяют тот С0 2 , который не был использован при фотосинтезе, и что этот С0 2 не имеет отношения к дыханию.

Однако постепенно накапливалось все больше данных о том, что дыхание животных и растений протекает однотипно, несмотря на отсутствие у растений специальных дыхательных органов, причем основным субстратом дыхания служат сахара. И. П. Бородин (1876) в серии точных опытов установил, что интенсивность дыхания листоносных побегов в темноте в первую очередь зависит от количества углеводов, накопленных ими на свету.

Во второй половине XIX в. в результате изучения дыхания у растительных и животных объектов общее уравнение этого процесса приняло следующий вид:

С6Н12О 6 + 60 2 6С0 2 + 6Н 2 0 + энергия (2875 кДж/моль)

ЗНАЧЕНИЕ ДЫХАНИЯ В ЖИЗНИ РАСТЕНИЯ

Дыхание - один из центральных процессов обмена веществ растительного организма. Выделяющаяся при дыхании энергия тратится как на процессы роста, так и нa поддержание в активном состоянии уже закончивших рост органов растения. Вместе с тем значение дыхания не ограничивается тем, что это процесс, поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно _ восстановительный процесc, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания - источник многих метаболитов. Несмотря на то что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга. Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФ-Н), так и метаболитов. Как видно из суммарного уравнения, в процессе дыхания образуется также вода. Эта вода в крайних условиях обезвоживания может быть использована растением и предохранить его от гибели. В некоторых случаях, когда энергия дыхания выделяется в виде тепла, дыхание ведет к бесполезной потере сухого вещества. В этой связи при рассмотрении процесса дыхания надо помнить, что не всегда усиление процесса дыхания является полезным для растительного организма.

1. Во всех листьях есть жилки. Из каких структур они образованы? Какова их роль в транспорте веществ по растению?

Жилки образованы сосудисто-волокнистыми пучками, которые пронизывают всё растение, соединяя его части - побеги, корни, цветки и плоды. Их основу составляют проводящие ткани, которые осуществляют активное перемещение веществ, и механические. Вода и растворённые в ней минеральные вещества передвигаются в растении от корней к надземным частям по сосудам древесины, а органические вещества - по ситовидным трубкам луба из листьев в другие части растения.

Кроме проводящей ткани в состав жилки входит механическая ткань: волокна, придающие листовой пластине прочность и упругость.

2. Какова роль кровеносной системы?

Кровь разносит по организму питательные вещества и кислород, выносит углекислый газ и другие продукты распада. Таким образом, кровь выполняет дыхательную функцию. Белые кровяные клетки выполняют защитную функцию: они уничтожают попавшие в организм болезнетворные микроорганизмы.

3. Из чего состоит кровь?

Кровь состоит из бесцветной жидкости - плазмы и клеток крови. Различают красные и белые кровяные клетки. Красные кровяные клетки придают крови красный цвет, так как в их состав входит особое вещество - пигмент гемоглобин.

4. Предложите простые схемы замкнутой и незамкнутой кровеносных систем. Укажите на них сердце, сосуды и полость тела.

Схема незамкнутой кровеносной системы

5. Предложите опыт, доказывающий движение веществ по организму.

Докажем, что вещества движутся по организму на примере растения. Поставим в воду, подкрашенную красными чернилами, молодой побег какого-либо дерева. Через 2-4 суток вытащим побег из воды, смоем с него чернила и отрежем кусочек нижней части. Рассмотрим сначала поперечный срез побега. На срезе видно, что древесина окрасилась в красный цвет.

Затем разрежем вдоль оставшуюся часть побега. Красные полоски появились в местах окрасившихся сосудов, которые входят в состав древесины.

6. Садоводы размножают некоторые растения срезанными веточками. Они сажают веточки в землю и накрывают банкой до полного укоренения. Объясните значение банки.

Под банкой формируется за счет испарения высокая постоянная влажность. Поэтому растение меньше испаряет влаги и не завянет.

7. Почему срезанные цветы рано или поздно вянут? Как можно предотвратить их скорое увядание? Составьте схему транспорта веществ в срезанных цветах.

Срезанные цветы не являются полноценным растением, т. к. у них удалена коневая система, которая обеспечивала адекватное (задуманное природой) всасывание воды и минеральных веществ, а также и часть листьев, которые обеспечивали фотосинтез.

Увядает цветок главным образом потому, что в срезанном растении, цветке в связи с усиленным испарением не хватает влаги. Начинается это с момента срезки и особенно когда цветок и листья долго находятся без воды, имеют большую поверхность испарения (срезанная сирень, срезанная гортензия). Многим срезанным оранжерейным цветам трудно переносить разницу температур и влажности того места, где они выращивались, с сухостью и теплом жилых комнат.

Но цветок может отцветать, или стареть, процесс этот естественный и необратимый.

Чтобы избежать увядания и продлить срок жизни цветов, букет цветов должен быть в особой упаковке, служащей для предохранения от сминания, проникновения солнечных лучей, тепла рук. На улице букет желательно нести цветками вниз (влага всегда на время переноса цветов будет поступать непосредственно к бутонам).

Одна из основных причин увядания цветов в вазе - уменьшение содержания сахаров в тканях и обезвоживание растения. Происходит это чаще всего из-за закупорки сосудов пузырьками воздуха. Чтобы избежать этого, конец стебля опускают в воду и делают косой срез острым ножом или секатором. После этого цветок уже не вынимают из воды. Если же такая потребность возникает, то операцию повторяют снова.

Перед тем как поставить срезанные цветы в воду, удаляют со стеблей все нижние листья, а у роз - еще и шипы. Это уменьшит испарение влаги и предотвратит бурное развитие бактерий в воде.

8. В чём заключается роль корневых волосков? Что такое корневое давление?

Вода поступает в растение через корневые волоски. Покрытые слизью, тесно соприкасаясь с почвой, они всасывают воду с растворёнными в ней минеральными веществами.

Корневое давление - это сила, вызывающая одностороннее движение воды от корней к побегам.

9. Каково значение испарения воды листьями?

Попав в листья, вода испаряется с поверхности клеток и в виде пара через устьица выходит в атмосферу. Этот процесс обеспечивает непрерывный восходящий ток воды по растению: отдав воду, клетки мякоти листа, подобно насосу, начинают интенсивно поглощать её из окружающих их сосудов, куда вода поступает по стеблю из корня.

10. Весной садовод обнаружил два повреждённых дерева. У одного мыши повредили кору частично, у другого зайцы обгрызли ствол кольцом. Какое дерево может погибнуть?

Может погибнуть дерево, у которого зайцы обгрызли ствол кольцом. В результате этого будет уничтожен внутренний слой коры, который называют лубом. По нему перемещаются растворы органических веществ. Без их притока клетки, находящиеся ниже повреждения погибнут.

Между корой и древесиной залегает камбий. Весной и летом камбий энергично делится, и в результате в сторону коры откладываются новые клетки луба, а в сторону древесины - новые клетки древесины. Поэтому жизнь дерева будет зависеть от того, поврежден ли камбий.

Всё живое на Земле существует за сёт солнечного тепла и энергии, достигающей поверхности нашей планеты. Все животные и человек приспособились добывать энергию из синтезированных растениями органических веществ. Чтобы использовать энергию Солнца, заключённую в молекулах органических веществ, её необходимо высвободить, окислив эти вещества. Чаще всего в качестве окислителя используют кислород воздуха, благо он составляет почти четверть объёма окружающей атмосферы.

Одноклеточные простейшие животные, кишечнополостные, свободноживущие плоские и круглые черви дышат всей поверхностью тела . Специальные органы дыхания - перистые жабры появляются у морских кольчатых червей и у водных членистоногих. Органами дыхания членистоногих являются трахеи, жабры, листовидные лёгкие расположенные в углублениях покрова тела. Система органов дыхания ланцетника представлена жаберными щелями , пронизывающими стенку переднего отдела кишечника - глотку. У рыб под жаберными крышками располагаются жабры , обильно пронизанными мельчайшими кровеносными сосудами. У наземных позвоночных органами дыхания являются лёгкие . Эволюция дыхания у позвоночных шла по пути увеличения площади легочных перегородок, участвующих в газообмене, совершенствования транспортных систем доставки кислорода к клеткам, расположенным внутри организма, и развития систем, обеспечивающих вентиляцию органов дыхания.

Строение и функции органов дыхания

Необходимым условием жизнедеятельности организма является постоянный газообмен между организмом и окружающей средой. Органы, по которым циркулируют вдыхаемый и выдыхаемый воздух, объединяются в дыхательный аппарат. Систему органов дыхания образуют носовая полость, глотка, гортань, трахея, бронхи и лёгкие. Большинство из них представляют собой воздухоносные пути и служат для проведения воздуха в лёгкие. В лёгких и происходят процессы газообмена. При дыхании организм получает из воздуха кислород, который разносится кровью по всему телу. Кислород участвует в сложных окислительных процессах органических веществ, при котором освобождается необходимая организму энергия. Конечные продукты распада - углекислота и частично вода - выводятся из организма в окружающую среду через органы дыхания.

Название отдела Особенности строения Функции
Воздухоносные пути
Полость носа и носоглотка Извилистые носовые ходы. Слизистая снабжена капиллярами, покрыта мерцательным эпителием и имеет много слизистых железок. Есть обонятельные рецепторы. В полости носа открываются воздухоносные пазухи костей.
  • Задерживание и удаление пыли.
  • Уничтожение бактерий.
  • Обоняние.
  • Рефлекторное чихание.
  • Проведение воздуха в гортань.
Гортань Непарные и парные хрящи. Между щитовидным и черпаловидными хрящами натянуты голосовые связки, образующие голосовую щель. Надгортанник прикреплён к щитовидному хрящу. Полость гортани выстлана слизистой оболочкой, покрытой мерцательным эпителием.
  • Согревание или охлаждение вдыхаемого воздуха.
  • Надгортанник при глотании закрывает вход в гортань.
  • Участие в образовании звуков и речи, кашле при раздражении рецепторов от попадания пыли.
  • Проведение воздуха в трахею.
Трахея и бронхи Трубка 10–13 см с хрящевыми полукольцами. Задняя стенка эластичная, граничит с пищеводом. В нижней части трахея разветвляется на два главных бронха. Изнутри трахея и бронхи выстланы слизистой оболочкой. Обеспечивает свободное поступление воздуха в альвеолы лёгких.
Зона газообмена
Лёгкие Парный орган - правое и левое. Мелкие бронхи, бронхиолы, легочные пузырьки (альвеолы). Стенки альвеол образованы однослойным эпителием и оплетены густой сетью капилляров. Газообмен через альвеолярно-капилярную мембрану.
Плевра Снаружи каждое лёгкое покрыто двумя листками соединительнотканной оболочки: легочная плевра прилегает к лёгким, пристеночная - к грудной полости. Между двумя листками плевры - полость (щель), заполненная плевральная жидкостью.
  • За счёт отрицательного давления в полости осуществляется растягивание лёгких при вдохе.
  • Плевральная жидкость уменьшает трение при движении лёгких.

Функции дыхательной системы

  • Обеспечение клеток организма кислородом О 2 .
  • Удаление из организма углекислого газа СО 2 , а также некоторых конечных продуктов обмена веществ (паров воды, аммиака, сероводорода).

Носовая полость

Воздухоносные пути начинаются с носовой полости , которая через ноздри соединяется с окружающей средой. От ноздрей воздух проходит по носовым ходам, выстланным слизистым, реснитчатым и чувствительным эпителием. Наружный нос состоит из костных и хрящевых образований и имеет форму неправильной пирамиды, которая изменяется в зависимости от особенностей строения человека. В состав костного скелета наружного носа входят носовые косточки и носовая часть лобной кости. Хрящевой скелет является продолжением костного скелета и состоит из гиалиновых хрящей различной формы. Полость носа имеет нижнюю, верхнюю и две боковые стенки. Нижняя стенка образована твёрдым нёбом, верхняя - решётчатой пластинкой решётчатой кости, боковая - верхней челюстью, слёзной костью, глазничной пластинкой решётчатой кости, нёбной костью и клиновидной костью. Носовой перегородкой полость носа разделена на правую и левую части. Перегородка носа образована сошником, перпендикулярной пластинкой решётчатой кости и спереди дополняется четырёхугольным хрящом носовой перегородки.

На боковых стенках полости носа располагаются носовые раковины - по три с каждой стороны, что увеличивает внутреннюю поверхность носа, с которой соприкасается вдыхаемый воздух.

Носовая полость образована двумя узкими и извилистыми носовыми ходами . Здесь воздух согревается, увлажняется и освобождается от частичек пыли и микробов. Оболочка, выстилающая носовые ходы, состоит из клеток, которые выделяют слизь, и клеток реснитчатого эпителия. Движением ресничек слизь вместе с пылью и микробами направляется из носовых ходов наружу.

Внутренняя поверхность носовых ходов богато снабжена кровеносными сосудами. Вдыхаемый воздух, попадает в полость носа, обогревается, увлажняется, очищается от пыли и частично обезвреживается. Из носовой полости он попадает в носоглотку. Затем воздух из носовой полости попадает в глотку, а из неё - в гортань.

Гортань

Гортань - один из отделов воздухоносных путей. Сюда из носовых ходов через глотку поступает воздух. В стенке гортани есть несколько хрящей: щитовидный, черпаловидный и др. В момент глотания пищи мышцы шеи поднимают гортань, а надгортанный хрящ опускается и закрывается гортань. Поэтому пища поступает только в пищевод и не попадает в трахею.

В узкой части гортани расположены голосовые связки , посредине между ними находится голосовая щель. При прохождении воздуха голосовые связки вибрируют, производя звук. Образование звука происходит на выдохе при управляемом человеком движении воздуха. В формировании речи участвуют: носовая полость, губы, язык, мягкое нёбо, мимические мышцы.

Трахея

Гортань переходит в трахею (дыхательное горло), которая имеет форму трубки длиной около 12 см, в стенках которого есть хрящевые полукольца, не позволяющие ей спадать. Задняя стенка её образована соединительнотканной перепонкой. Полость трахеи, как и полость других воздухоносных путей выстлана мерцательным эпителием, препятствующим проникновению в лёгкие пыли и других инородных тел. Трахея занимает серединное положение, сзади она прилежит к пищеводу, а по бокам от неё располагаются сосудисто-нервыне пучки. Спереди шейный отдел трахеи прикрывают мышцы, а вверху она охватывается ещё щитовидной железой. Грудной отдел трахеи прикрыт спереди рукояткой грудины, остатками вилочковой железы и сосудами. Изнутри трахея покрыта слизистой оболочкой, содержащей большое количество лимфоидной ткани и слизистых желёз. При дыхании мелкие частички пыли прилипают к увлажнённой слизистой оболочке трахеи, а реснички мерцательного эпителия продвигают их обратно к выходу из дыхательных путей.

Нижний конец трахеи делится на два бронха, которые затем многократно ветвятся, входят в правое и левое лёгкие, образуя в лёгких «бронхиальное дерево».

Бронхи

В грудной полости трахея делится на два бронха - левый и правый. Каждый бронх входит в лёгкое и там делится на бронхи меньшего диаметра, которые разветвляются на мельчайшие воздухоносные трубочки - бронхиолы. Бронхиолы в результате дальнейшего ветвления переходят в расширения - альвеолярные ходы, на стенках которых находятся микроскопические выпячивания, называемые легочными пузырьками, или альвеолами .

Стенки альвеол построены из особого тонкого однослойного эпителия и густо оплетены капиллярами. Общая толщина стенки альвеолы и стенки капилляра составляет 0,004 мм. Через эту тончайшую стенку происходит газообмен: в кровь из альвеолы поступает кислород, а обратно - углекислый газ. В лёгких насчитывается несколько сотен миллионов альвеол. Общая поверхность их у взрослого человека составляет 60–150 м 2 . благодаря этому в кровь поступает достаточное количество кислорода (до 500 литров в сутки).

Лёгкие

Лёгкие занимают почти всю полость грудной полости и представляют собой упругие губчатые органы. В центральной части лёгкого располагаются ворота, куда входят бронх, легочная артерия, нервы, а выходят легочные вены. Правое лёгкое делится бороздами на три доли, левое на две. Снаружи лёгкие покрыты тонкой соединительнотканной плёнкой - легочной плеврой, которая переходит на внутреннею поверхность стенки грудной полости и образует пристенную плевру. Между этими двумя плёнками находится плевральная щель, заполненная жидкостью, уменьшающей трение при дыхании.

На лёгком различают три поверхности: наружную, или рёберную, медиальную, обращённую в сторону другого лёгкого, и нижнюю, или диафрагмальную. Кроме того, в каждом лёгком различают два края: передний и нижний, отделяющие диафрагмальную и медиальную поверхности от рёберной. Сзади рёберная поверхность без резкой границы переходит в медиальную. Передний край левого лёгкого имеет сердечную вырезку. На медиальной поверхности лёгкого располагаются его ворота. В ворота каждого лёгкого входит главный бронх, легочная артерия, которая несёт в лёгкое венозную кровь, и нервы, иннервирующие лёгкое. Из ворот каждого лёгкого выходят две легочные вены, которые несут к сердцу артериальную кровь, и лимфатические сосуды.

Лёгкие имеют глубокие борозды, разделяющие их на доли - верхнюю, среднюю и нижнюю, а в левом две - верхнюю и нижнюю. Размеры лёгкого не одинаковы. Правое лёгкое несколько больше левого, при этом оно короче его и шире, что соответствует более высокому стоянию правого купола диафрагмы в связи с правосторонним расположением печени. Цвет нормальных лёгких в детском возрасте бледно-розовый, а у взрослых они приобретают тёмно-серую окраску с синеватым оттенком - следствие отложения в них попадающих с воздухом пылевых частиц. Ткань лёгкого мягкая, нежная и пористая.

Газообмен лёгких

В сложном процессе газообмена выделяют три основные фазы: внешнее дыхание, перенос газа кровью и внутреннее, или тканевое, дыхание. Внешнее дыхание объединяет все процессы, происходящие в лёгком. Оно осуществляется дыхательным аппаратом, к которому относятся грудная клетка с мышцами, приводящими её в движение, диафрагма и лёгкие с воздухоносными путями.

Воздух, поступивший в лёгкие при вдохе, изменяет свой состав. Воздух в лёгких отдаёт часть кислорода и обогащается углекислым газом. Содержание углекислого газа в венозной крови выше, чем в воздухе, находящемся в альвеолах. Поэтому углекислый газ выходит из крови в альвеолы и содержание его меньше, чем в воздухе. Сначала кислород растворяется в плазме крови, далее связывается с гемоглобином, а в плазму поступают новые порции кислорода.

Переход кислорода и углекислого газа из одной среды в другую проходит благодаря диффузии от большей концентрации к меньшей. Хотя диффузия протекает медленно, поверхность контакта крови с воздухом в лёгких настолько велика, что полностью обеспечивает нужный газообмен. Подсчитано, что полный газообмен между кровью и альвеолярным воздухом может происходить за время, которое втрое короче, чем время пребывания крови в капиллярах (т.е. в организме имеются значительные резервы обеспечения тканей кислородом).

Венозная кровь, попав в лёгкие, отдаёт углекислый газ, обогащается кислородом и превращается в артериальную. В большом круге эта кровь расходится по капиллярам во все ткани и отдаёт кислород клеткам тела, которые постоянно потребляют его. Углекислого газа, выделяющегося клетками в результате их жизнедеятельности, здесь больше, чем в крови, и он диффундирует из тканей в кровь. Таким образом, артериальная кровь, пройдя через капилляры большого круга кровообращения, становится венозной и правой половиной сердца направляется в лёгкие, здесь опять насыщается кислородом и отдаёт углекислый газ.

В организме дыхание осуществляется с помощью дополнительных механизмов. Жидкие среды, входящие в состав крови (её плазмы), обладают низкой растворимостью в них газов. Поэтому, для того чтобы человек мог существовать, ему нужно было бы иметь сердце мощнее в 25 раз, лёгкие - в 20 раз и за одну минуту перекачивать более 100 литров жидкости (а не пять литров крови). Природа нашла способ преодоления этой трудности, приспособив для переноса кислорода особое вещество - гемоглобин. Благодаря гемоглобину кровь способна связывать кислород в 70 раз, а углекислый газ - в 20 раз больше, чем жидкая часть крови - её плазма.

Альвеола - тонкостенный пузырёк диаметром 0,2 мм, заполненный воздухом. Стенка альвеолы образована одним слоем плоских клеток эпителия, по наружной поверхности которых разветвляется сетка капилляров. Таким образом, газообмен происходит через очень тонкую перегородку, образованную двумя слоями клеток: стенки капилляра и стенки альвеолы.

Обмен газов в тканях (тканевое дыхание)

Обмен газов в тканях осуществляется в капиллярах по тому же принципу, что и в лёгких. Кислород из тканевых капилляров, где его концентрация высока, переходит в тканевую жидкость с более низкой концентрацией кислорода. Из тканевой жидкости он проникает в клетки и сразу же вступает в реакции окисления, поэтому в клетках практически нет свободного кислорода.

Диоксид углерода по тем же законам поступает из клеток, через тканевую жидкость, в капилляры. Выделяющийся углекислый газ способствует диссоциации оксигемоглобина и сам вступает в соединение с гемоглобином, образуя карбоксигемоглобин , транспортируется в лёгкие и выделяется в атмосферу. В оттекающей от органов венозной крови углекислый газ находится как в связанном, так и в растворённом состоянии в виде угольной кислоты, которая в капиллярах лёгких легко распадается на воду и углекислый газ. Угольная кислота может также вступать в соединения с солями плазмы, образуя бикарбонаты.

В лёгких, куда поступает венозная кровь, кислород снова насыщает кровь, а углекислый газ из зоны высокой концентрации (легочных капилляров) переходит в зону низкой концентрации (альвеол). Для нормального газообмена воздух в лёгких постоянно сменяться, что достигается ритмическими атаками вдоха и выдоха, за счёт движений межрёберных мышц и диафрагмы.

Транспорт кислорода в организме

Путь кислорода Функции
Верхние дыхательные пути
Носовая полость Увлажнение, согревание, обеззараживание воздуха, удаление частиц пыли
Глотка Проведение согретого и очищенного воздуха в гортань
Гортань Проведение воздуха из глотки в трахею. Защита дыхательных путей от попадания пищи надгортанным хрящом. Образование звуков путём колебания голосовых связок, движения языка, губ, челюсти
Трахея
Бронхи Свободное продвижение воздуха
Лёгкие Органы дыхания. Дыхательные движения осуществляются под контролем центральной нервной системы и гуморального фактора, содержащегося в крови, - СО 2
Альвеолы Увеличивают площадь дыхательной поверхности, осуществляют газообмен между кровью и лёгкими
Кровеносная система
Капилляры лёгких Транспортируют венозную кровь из легочной артерии в лёгкие. По законам диффузии О 2 поступает из мест большей концентрации (альвеолы) в места меньшей концентрации (капилляры), в то же время СО 2 диффундирует в противоположном направлении.
Легочная вена Транспортирует О 2 от лёгких к сердцу. Кислород, попав в кровь, сначала растворяется в плазме, затем соединяется с гемоглобином, и кровь становится артериальной
Сердце Проталкивает артериальную кровь по большому кругу кровообращения
Артерии Обогащают кислородом все органы и ткани. Легочные артерии несут венозную кровь к лёгким
Капилляры тела Осуществляют газообмен между кровью и тканевой жидкостью. О 2 переходит в тканевую жидкость, а СО 2 диффундирует в кровь. Кровь становится венозной
Клетка
Митохондрии Клеточное дыхание - усвоение О 2 воздуха. Органические вещества благодаря О 2 и дыхательным ферментам окисляются (диссимиляция) конечные продукты - Н 2 О, СО 2 и энергия которая идёт на синтез АТФ. Н 2 О и СО 2 выделяются в тканевую жидкость, из которой диффундируют в кровь.

Значение дыхания.

Дыхание - это совокупность физиологических процессов, обеспечивающих газообмен между организмом и внешней средой (внешнее дыхание ), и окислительных процессов в клетках, в результате которых выделяется энергия (внутреннее дыхание ). Обмен газов между кровью и атмосферным воздухом (газообмен ) - осуществляется органами дыхания.

Источником энергии в организме служат пищевые вещества. Основным процессом, освобождающим энергию этих веществ, является процесс окисления. Он сопровождается связыванием кислорода и образованием углекислого газа. Учитывая, что в организме человека нет запасов кислорода, непрерывное поступление его жизненно необходимо. Прекращение доступа кислорода в клетки организма ведёт к их гибели. С другой стороны, образованный в процессе окисления веществ углекислый газ должен быть удалён из организма, так как накопление значительного количества его опасно для жизни. Поглощение кислорода из воздуха и выделение углекислого газа осуществляется через систему органов дыхания.

Биологическое значение дыхания заключается в:

  • обеспечении организма кислородом;
  • удалении углекислого газа из организма;
  • окислении органических соединений БЖУ с выделением энергии, необходимой человеку для жизнедеятельности;
  • удалении конечных продуктов обмена веществ (пары воды, аммиака, сероводорода и т.д. ).

В дыхании участвуют системы, которые снабжают организм кислородом. У растений оно идентично животному. Этот процесс длится круглосуточно. Дыхание у растений происходит в клетках органов, расположенных на всей поверхности листьев, стеблей и корней. В нем взаимодействуют все клетки организма. Если у представителя флоры произойдет закупорка клеток, то поступление углекислого газа прекратится. В этом случае растение может погибнуть.

Историческая справка

О том, что растения при дыхании выделяют кислород, было написано в научных трудах А.Л. Лавуазье. В 1773-1783 он проводил опыты. Итогом его работ стало открытие, что при горении и дыхании поглощается большое количество кислорода. При этом выделяется углекислый газ и тепло.

На основании своих трудов ученый выявил, что дыхание является горением питательных веществ в живом организме. Позже эту деятельность продолжил Я. Ингенхауз. Он доказал, что и в темноте, и при солнечном свете происходит поглощение углекислого газа и выделение кислорода. Это означает, что растения при дыхании могут перерабатывать как СО 2 , так и О 2 , в зависимости от того, участвует ли свет в этом процессе или нет.

Подобные исследования проводили Х.Ф. Шейнбайн и А.Н. Бах. В 1897 году была открыта теория В этом же году похожие труды представил К. Энглер. В 1955 году О. Хаяиши и Г.С. Мэзон при помощи опытов подтвердили, что кислород является важным элементом органических соединений.

Специфика дыхания у растений

Дыханием называют универсальный процесс. Он считается неотъемлемой частью всех живых организмов. Принято думать, что дыхание у растений происходит в клетках органов и тканей, через которые происходит газообмен. Такую систему связывают с жизнью, а прекращение дыхания - со смертью всего живого.

Проявление жизнедеятельности неразрывно связано с расходованием энергии. При этом происходит развитие, размножение, рост, клеточное деление. Передвигаются и поглощаются питательные вещества, вода, различные синтезы и процессы. растений являются сложной многозвенной системой. Сопряженные окислительные процессы изменяют химический состав органических соединений.

Клеточное дыхание

Такое дыхание является окислительным процессом. В нем участвует кислород и распад важных питательных веществ. Происходит освобождение энергии и образование активных метаболитов. Клетками они применяются для образования необходимых процессов жизнедеятельности. В этом случае дыхание у растений происходит в клетках органов и рассчитывается с помощью суммарного уравнения:

С6Н12О6 + 602 > 6С02 + 6Н20 + 2875 кДж/моль.

Полученная энергия освобождается не целиком. Часть энергии аккумулируется в аденозинтрифосфат. После синтеза на мембране образовываются разности электрических зарядов. Такое явление предшествует разности концентраций ионов водорода, которые образовываются в двух сторонах мембраны. Дыхание и питание растений происходят при помощи протонного градиента. Он является главным материалом энергии, необходим для тонких процессов, происходящих в клетке. Такие процессы применяются при синтезе, поступлениях, передвижениях воды и питательных элементов. В химической структуре создается разность потенциалов между окружающей средой и цитоплазмой. Энергия, которая не смогла накопиться в протонном градиенте, рассеивается в качестве света.

Каталитические процессы дыхания

Окисление субстратов происходит при помощи ферментов. Их называют белковыми катализаторами. Ферменты обладают некоторыми особенностями:

  • очень высокой лабильностью;
  • повышенной активностью;
  • большой специфичностью по отношению к субстратам.

Дыхание и питание растений зависит от пространственной ориентации, которая изменяется под воздействием внутренних и внешних факторов. Происходит регуляция обмена веществ. С понятием электронов связаны некоторые способы окисления. Типы окислительных реакций:

  • отдача электронов;
  • присоединение кислорода;
  • отнятие водорода;
  • возникновение гидратированного соединения;
  • отнятие протонов и двух электронов.

Окисление вещества сопряжено с восстановлением акцептора. Такие ферменты принято считать оксидоредуктазами. При этом происходит отсоединение протонов и электронов. Их принимает акцептор. Энзим формирует реакцию переноса. К таким процессам относятся аэробное и анаэробное дыхание.

Аэробное дыхание

Такая система дыхания относится к окислительному процессу. При дыхании растение поглощает углекислый газ, выделяя при этом кислород. Субстрат распадается на энергии неорганических веществ. Главными субстратами для дыхания растений являются углеводы. Кроме них, может расходоваться запас белков и жиров.

Такое дыхание включает в себя два главных этапа:

  1. Бескислородный процесс. В нем происходит медленный постепенный распад субстратов, освобождение атомов водорода и связывание процесса с коферментами.
  2. Кислородный процесс. Здесь наблюдается последующее отщепление атомов водорода. Они отходят от дыхательного субстрата и постепенно окисляются. В итоге происходит перенос электронов на кислород.

Анаэробное дыхание

Такое дыхание растений происходит при помощи микроорганизмов, живущих на Для окисления веществ они не используют молекулярный кислород. Им необходима азотная соль, угольная и серная кислота, которая при длительных процессах превращается в восстановленные соединения. Необходимая энергия достигается при помощи расщепления сложных молекул органических веществ на наиболее простые. Конечным акцептором электронов считаются карбонаты, сульфаты и нитриты. Азотная соль, серная и угольная кислота превращаются в восстановительные соединения.

Корневая система

Неотъемлемой частью процесса является дыхание корней растений. Для активного произрастания представителям флоры необходим свежий воздух, поступающий к Такое дыхание осуществляется с помощью кислорода, который циркулирует в крупных порах.

При некапиллярной порозности во время затяжных ливней или переизбытке влаги в горшке почва перенасыщается влагой. В этот период корневая система испытывает асфиксию. Некоторые подвиды растений могут дышать благодаря кислороду, растворенному во влаге. При этом поток воды должен циркулировать или быть проточным. При застое влаги корни представителей флоры не получают необходимого кислорода.

В приемлемых условиях при дыхании растение поглощает углекислый газ. Но при застойном режиме оно не может вести полноценный газообмен. Рост значительно замедляется. По отношению к азоту уровень кислорода снижается на 21%. Прекращается использование минеральных ресурсов почвы. Растение захватывает воздух, который поступает за счет листьев, стебля и коры растения.

Значение дыхания

Дыхание у растений происходит в клетках органов и является основным процессом обмена веществ. Энергия, которая выделяется при дыхании, расходуется на рост и активность представителей флоры.

Дыхание растений сравнивают с фотосинтезом. Процесс проходит несколько этапов. На промежуточных стадиях формируются органические соединения. Они применяются в метаболических реакциях. К ним относят пентозы и органические кислоты, которые образуются при дыхательном распаде. Поэтому дыхание принято считать источником метаболитов.

Система дыхания считается поставщиком энергетических эквивалентов НАДФ-Н и АТФ. Растения при дыхании выделяют кислород. В этом процессе у представителей флоры образуется вода. При обезвоживании растения она предохраняет его от гибели.

Иногда энергия дыхания может быть выделена в качестве тепла. В этом случае дыхательный процесс приведет к ненужной затрате сухого вещества. Усиление процесса дыхания для самого растения далеко не во всех случаях является полезным.